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abstract: Food web assembly algorithms show great promise for
investigating issues involving the dynamics of whole webs, such as
succession, rehabilitation, and invasibility. Permanence, which re-
quires that all species densities remain positive and finite, has been
suggested as a good stability constraint. This study tests the validity
of the permanence constraint by comparing real webs and model
webs from the literature to the predictions of three assembly algo-
rithms: one constrained by permanence and feasibility, one con-
strained by feasibility alone, and one with no dynamical constraint.
It is found that the addition of the permanence constraint does not
improve the predictive ability of the algorithm. Its main effect is to
increase the efficiency of species selected for the web. Dynamically
constrained webs have lower connectance and indistinct trophic lev-
els compared to real webs and webs from other models, which is a
consequence of omitting species’ physiology. Although webs are less
likely to be permanent if they have high omnivory and cycling, the
web-building process circumvents this constraint. The challenges of
testing and justifying system-level hypotheses, including isolating and
detecting their effects, are discussed.

Keywords: food webs, stability, permanence, feasibility, niche model,
nested-hierarchy model.

A food web–building algorithm is a series of repeating
steps by which model food webs can be created. Starting
with one or a few species, the algorithm permits new spe-
cies to invade and some species to be lost at each time
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step, according to some prespecified rules. There is already
a large body of food web assembly literature (Tregonning
and Roberts 1979; Post and Pimm 1983; Mithen and Law-
ton 1986; Taylor 1988; Drake 1990; Law and Blackford
1992; Luh and Pimm 1993; Law and Morton 1996; Lock-
wood et al. 1997; Drossel et al. 2001; Bastolla et al. 2005;
Virgo et al. 2006) and a complimentary literature testing
the predictions of the algorithms in experimental systems
such as microcosms (Dickerson and Robinson 1986; Rob-
inson and Dickerson 1987; Drake 1991; Wardle et al. 1995;
Moyle and Light 1996; Weatherby et al. 1998; Chase 2003;
Fukami 2004). Because assembly algorithms simulate in-
vasion and extinction in a whole food web, they hold great
promise for answering questions about succession, reha-
bilitation, and invasibility.

The rules governing which food webs survive intact to
the next time step are often based on dynamical constraints
(though not always; e.g., Luh and Pimm 1993). For ex-
ample, food webs may be constrained to be feasible (i.e.,
all species have a positive steady state biomass [e.g., Tre-
gonning and Roberts 1979]) or locally stable (e.g., Post
and Pimm 1983). This article focuses on a dynamical con-
straint called permanence. A food web is permanent if the
densities of all species remain positive and finite and it
can recover after those densities are brought arbitrarily
close to 0 (Hofbauer and Sigmund 1988). Permanence has
the advantage over local stability in that it does not pre-
suppose the existence of a single steady state but does allow
for complex trajectories within the phase space, such as
limit cycles (Jansen and Sigmund 1998). Indeed, it does
not identify what dynamical behavior the system under-
goes, and such behavior remains unknown without further
analysis. Therefore, permanence is the mathematical con-
dition closest to what theoreticians mean when they say
“stable” (cf. Grimm et al. 1992) and is more consistent
with ecologists’ experience of real food webs (Hastings
1988; Paine 1988; Hall and Raffaelli 1993).

The concept of invasion and reinvasion is intrinsic to
how permanence is tested (Kirlinger 1986), making it a
natural candidate for food web assembly. Indeed, a few
permanent food web–building algorithms have already ap-
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Permanent Food Web Structure 203

peared in the literature (Law and Morton 1996; Virgo et
al. 2006). However, before it can be considered a reliable
tool for quantitatively researching the questions men-
tioned above, for which it holds much promise, we must
have some assurance that it provides a reasonable esti-
mation of how real food webs behave. Ideally, the decrease
in parsimony incurred by assuming that food webs are
permanent will be offset by some increase in predictive
ability. Otherwise, it would be sufficient to use more min-
imal constraints, such as a feasible numerical solution (e.g.,
Taylor 1988), or even no dynamics at all (e.g., Luh and
Pimm 1993) and to keep permanence for use as a qual-
itative, conceptual model.

One way to test this is to start by assuming that the
patterns in food web structure are a consequence of the
processes underlying them. Then we can use the ability to
predict food web structure as a method of evaluating the
permanent food web–building algorithm against more
minimal models. There is a growing literature docu-
menting the structure of large, high-quality empirical webs
that can be used for this task (e.g., citations in Williams
and Martinez 2000). While no documented food web is
a perfect representation, these webs are the product of 20
years of generalizations about food web structure and cri-
tiques of the same. Many have been collated specifically
to address the criticisms leveled at earlier webs (Briand
and Cohen 1984, 1987; Cohen 1989a), such as incom-
pleteness (Hall and Raffaelli 1991, 1993; Goldwasser and
Roughgarden 1997), the practice of lumping species to-
gether (Lawton and Warren 1988; Paine 1988; Pimm and
Kitching 1988; Sugihara et al. 1989; 1997; Warren 1989;
Hall and Raffaelli 1991; Pimm et al. 1991; Martinez 1993;
Martinez et al. 1999), and taxonomic bias (May 1983;
Paine 1988; Sugihara et al. 1997). Therefore, these webs
represent the best information that is available to us about
food web structure.

Concurrent with the accumulation of documented food
webs, there has been an effort to provide simple explana-
tions for generalizations that have been made about them.
Starting with the cascade model (Cohen and Newman
1985), these models have shown how simple heuristics gov-
erning the trophic interactions between individual species
can predict whole-web structure. The cascade model as-
sumed that there was a one-dimensional niche ordering,
such as body size (Cohen 1989b), which meant that no
species could prey on another species with a niche value
higher than its own. The niche model built on this by in-
troducing a contiguous feeding range and relaxing the feed-
ing hierarchy of the cascade model (Williams and Martinez
2000). The nested-hierarchy model made explicit the heu-
ristic that predators who share one prey are also likely to
share others, by merit of similar physiology (Cattin et al.
2004). Stouffer et al. (2005) found that there were two key

properties in these models: first, that species’ niche values
formed a totally ordered set, and second, that each species
has a specific, exponentially decaying probability of preying
on a given fraction of species with lower niche values. The
niche and nested-hierarchy models share both properties,
and the cascade shares the first. Therefore, in this article,
we refer to the niche, nested-hierarchy, and generalized cas-
cade models collectively as “ordered-niche models.”

The success of these ordered-niche models presents an
additional challenge to permanence. For although per-
manence is conceptually appealing, it is similar to other
higher-level selection theories in that justifying it for quan-
titative work requires more than just demonstrating that
it can predict food web structure (Williams 1966, pp. 101–
109). Even when a clear relationship between a dynamical
constraint and a food web attribute is determined, if it
can also be explained in terms of niche models, then they
take precedence as an explanation for web structure be-
cause they provide a more parsimonious explanation.

This study attempts to assess the predictive value of
permanence, taking into account the issues discussed
above. To isolate the effect of permanence from the more
minimal assumptions that underlie it, three food web–
building algorithms are created: one with feasibility and
permanence as constraints, one with only feasibility as a
constraint, and one with no dynamical constraint at all.
The predictions of these algorithms are then compared to
real empirical webs, and their predictive success is con-
trasted with that of the ordered-niche models.

To date, all published food web–building algorithms
using permanence as a constraint have also included phys-
iological considerations (Law and Morton 1996; Virgo et
al. 2006), as one would expect when the objective is to
make the model as realistic as possible. However, given
that the objective in this article is to isolate the predictive
value of permanence, no physiological considerations are
included. This work also complements previous perma-
nent-assembly algorithms by increasing the set of food web
attributes for which the effect of permanence is known.
Virgo et al. (2006) measured the value of thermodynamic
goal functions arising from permanence, whereas in this
work, the structural attributes that are commonly used to
verify the ordered-niche models are investigated instead.

Methods

Measuring Food Web Attributes

The algorithms described below were run for 500 suc-
cessful invasions, and this was repeated as many times as
needed to provide a large collection of webs for testing.
The collection of webs was chosen such that no two webs
have a single species in common.
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204 The American Naturalist

The food web attributes measured were number of spe-
cies (n); top (T), intermediate (I), and basal (B) trophic
fractions (Cohen 1989a); mean maximum similarity (smax;
Williams and Martinez 2000); fraction of omnivores (O);
interactive connectance ( , where L is theL/[n(n � 1)/2]
number of links and n is the number of species; Martinez
1991); directed connectance ( ; Martinez 1991);2C p L/n
fraction of cycles, which are trophic relationships of the
form “A eats B, B eats C, … eats A,” excluding cannibalism
(“A eats A”) and mutual predation (“A eats B, B eats A”;
Cattin et al. 2004); short-weighted trophic level (Levine
1980; Williams and Martinez 2004); omnivory degree
(Williams and Martinez 2000); generality (G) and vul-
nerability (V; Schoener 1989); normalized standard de-
viations of generality (SD(G)) and vulnerability (SD(V);
Williams and Martinez 2000); and motifs and antimotifs
(Milo et al. 2002). A detailed description of these measures
can be found in “Detailed Description of Food Web At-
tributes” in the online edition of the American Naturalist.
Since a skewed interaction strength distribution is asso-
ciated with local stability (McCann et al. 1998; Emmerson
and Raffaelli 2004), both the interaction strength distri-
butions and local stability (May 1972) were also measured.

Food Web–Building Algorithms

Model Formulation. For dynamically constrained algo-
rithms, the interactions between species were of the Lotka-
Volterra form,

n
dxi p x d � a x , (1)�i i i, j j( )dt jp1

where xi is the biomass of species i, di represents the in-
trinsic rate of increase of species i, ai, j represents the in-
teractions between a species i and another species j, and
n is the total number of species. The fixed coefficients in
the relationships between predator and prey are a simpli-
fication, and there are other models in which this is not
the case (e.g., Drossel et al. 2001; Kondoh 2003).

If species i was an autotroph, then , , andd 1 0 a ! 0i i, i

. If species i was a heterotroph, then ,a ≤ 0 d ! 0i, j i

, and ai, j could take either sign. The system wasa p 0i, i

scaled with both and . These coefficient valuesFd F Fa F ! 1i i, j

are similar those that have been used in other assembly
algorithms (e.g., Lockwood et al. 1997).

Using biomass as the state variable is common in the
modeling literature (e.g., Laws et al. 2000). Its dimensions,
concentration of a nutrient per unit space or volume, permit
simplification of the coefficient value choices. If species i is
the predator and j the prey (i.e., ai, j is positive and
aj, i is negative), then conservation of matter dictates that

the flow out of the prey species must be greater than or
equal to the flow into the predator species. Consequently,

. It should be noted that species abundance isFa F ≤ Fa Fi, j j, i

also a common choice for the state variable in theoretical
ecology. Choosing one or the other provides a contrast with
ordered-niche models, because relationships between abun-
dance, body size, and biomass have been observed and have
consequences for food web structure (Cohen et al. 2003).

Generating the New Species. The algorithm began with a
set of five autotrophs, which is comparable to the number
of basal species in several large, well-documented webs
(Huxham et al. 1995; Opitz 1996) and consistent with pre-
vious food web–modeling work (Brose et al. 2006). At each
time step, a new species was created to attempt an invasion.
The number of autotrophs in the system was restricted to
the initial value of five. This means that the new species
was always a heterotroph unless there were fewer than five
autotrophs in the system. All coefficient values were chosen
from a random standard uniform distribution. For each in-
teraction between the new species and the existing species,
if i was the predator and j the prey, then �aj, i and gi, j were
chosen from a random standard uniform distribution,
where the efficiency was used to determineg p �a /ai, j i, j j, i

ai, j.
Each new species i had a probability f of interacting with

each existing species in the system, with equal chance of
being its predator or its prey (provided that this did not
result in autotrophs “preying” on other species). Values of

or were used, as indicated in “Results.”f p 0.2 f p 0.8

Can the New Species Invade? After a new species was cre-
ated, the algorithm tested whether it could invade the food
web. The rules for successful invasion depended on which
algorithm was used. For the control algorithm, every new
species was a successful invader. For the feasible algorithm,
a new species could invade only if its steady state biomass
was greater than 0. For the permanence algorithm, the
new species could invade if it had a positive growth rate
at low concentrations, that is, if

n

∗d � a x 1 0, (2)�i i, j j
jp1

where is the steady state biomass evaluated in the system∗xj

where the biomass of the new species approaches 0 (Dieck-
mann et al. 1995; Metz et al. 1995; Dieckmann 1996;
Dieckmann and Law 1996).

If the new species could not invade, another invader
was randomly generated, and the process was repeated. If
it could invade the system, it was permitted to, and the
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dynamical constraints on the web were applied to deter-
mine how the system responded to the invasion.

How Does the System Respond to the Invasion? When a
new species invades a food web, it can cause other species,
including itself, to become extinct. In the algorithms,
which species becomes extinct (if any) was determined by
the type of dynamical constraint applied to the web. For
the control algorithm, no species would become extinct
after an invasion.

For the feasible algorithm, species were removed until all
species in the web had a positive steady state concentration.
Species were removed one at a time, with the most negative
species removed first. In some cases, the removal of a species
resulted in a singular web. In that case, a singular value
decomposition was used to find the generalized inverse of
the interaction matrix, which was then used to find the
species with the lowest biomass, which was removed.

For the permanence algorithm, species were removed
until the entire system satisfied the sufficient condition for
permanence (Cantrell and Cosner 2003, chap. 4). This was
achieved by combining an analytical proof that all feasible
food chains are permanent with the method described by
Kirlinger (1986). Details of this may be found in “Motifs
in Algorithm Webs” and “Kirlinger’s Method” in the on-
line edition of the American Naturalist. In rare cases, this
algorithm was not able to find a permanent subsystem (for
similar cases, see Law and Morton 1996; Virgo et al. 2006).
In such cases, the algorithm simply removed the invader.

Trophic Constraints

In the algorithms above, a heterotroph was permitted to
feed on any species, regardless of its trophic level. This was
done to ensure that the algorithms were as minimal as
possible. However, as shown in “Results,” some food web
attributes are strongly dependent on the degree of omnivory
in the web. These attributes’ values in real webs reflect the
fact that those real webs have relatively well-defined trophic
levels and few cycles. Therefore, a very simple set of trophic
constraints was created that could be imposed on the al-
gorithms where needed, to demonstrate the importance of
distinct trophic levels for those attributes.

A trophic level ti was randomly assigned to each species.
The trophic level constrained the species’ feeding such that
it could be fed on by or feed on only species that were
within a range w (set to 0.5) of one level above or below
it. So, for example, given , a species withw p 0.5 t pi

can feed only on prey with tj in [1.2, 2.2] and be fed2.7
on only by predators with tj in [3.2, 4.2]. This ensured
that trophic levels were relatively well defined but still
permitted a small degree of omnivory.

Results

Webs Often Had a Higher Level of Constraint
than Was Imposed on Them

The overwhelming majority of control webs were neither
feasible nor stable nor permanent (2,420 of 2,500 webs),
and of those that were feasible and stable, most consisted
of a single autotroph and a heterotroph (52 of 80), and
very few had more than two trophic levels (2 of 80). In
contrast, food webs produced by the algorithms often had
a higher level of dynamical constraint than had been im-
posed on them. Of the webs produced by the feasible
algorithm, 2,465 of 2,500 webs were permanent, and 2,426
of those were both locally stable and permanent. Similarly,
2,382 of 2,500 webs produced by the permanence algo-
rithm were locally stable. Therefore, to isolate the effect
of permanence on food web structure, only the subset of
feasible webs that was impermanent was used for the
comparisons.

Poor Predictions: Low Connectance and
Indistinct Trophic Levels

The trophic fractions predicted by the algorithms (fig. 1A–
1C) compare best with those in phytotelmata webs, which
also had the web size range most similar to that produced
by the algorithms. Significant slopes produced by the al-
gorithms were negative for the top fraction, positive for
the intermediate fraction, and negative for the basal frac-
tion. This agrees not only with Murtaugh and Kollath’s
(1997) reanalysis of Schoenly et al.’s (1991) data, as shown
in figure 1, but also with trends found in other compi-
lations of empirical webs (Schoener 1989; Sugihara et al.
1989; Winemiller 1990; Schoenly et al. 1991; Havens 1992;
Martinez and Lawton 1995) and trends observed when
empirical webs are aggregated on the basis of species’
trophic similarity (Hall and Raffaelli 1991; Goldwasser and
Roughgarden 1997; Martinez et al. 1999).

The interactive connectance predicted by the algorithms
has a negative relationship with web size (fig. 1D), in agree-
ment with the Schoenly et al. (1991) data. Further, this
negative relationship asserts itself even when the algorithm
underlying the dynamical constraints would produce a pos-
itive relationship. For example, when the probability of a
new species interacting with the natives was increased to

, the control predicted that the interactive connect-f p 0.8
ance would increase with web size (logit p̂ p �0.309 �

, ); however, both the permanent webs0.01925n P p .013
and the impermanent feasible webs maintained their neg-
ative slope (permanent: logit ,p̂ p 0.303 � 0.0759n P !

; impermanent: logit , ).ˆ.001 p p 0.429 � 0.0770n P ! .001
The algorithm performed poorly at predicting empirical

food web attributes, in particular by underpredicting mean
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Figure 1: Fraction of top (A), intermediate (B), and basal (C) species and interactive connectance versus the number of species in the web (D),
summarized with multinomial regressions (Murtaugh 1994; Murtaugh and Kollath 1997). Dashed and dash-dotted lines represent food web–building
algorithms, and solid lines represent empirical webs (details in table A3 in the online edition of the American Naturalist). Algorithm webs compare
best with phytotelmata webs, but connectance decreases more quickly in dynamically constrained algorithms than in real webs.

maximum similarity (smax), overpredicting omnivory de-
gree measures (Osw), and underpredicting directed con-
nectance (C; table 1). The former two mispredictions result
because webs produced by the algorithms have relatively
indistinct trophic levels, compared to the empirical webs
(see below). The underprediction of directed connectance
is also reflected in figure 1D, which shows that the algo-
rithms constrain the interactive connectance with size
more strongly than in real webs. The low connectance
measures are also reflected in the mean generality and
vulnerability, which is at the lower end of the range re-
ported for early, highly aggregated data (Schoener 1989)
and well below the values into the tens that can be observed
in detailed parasitoid webs (Memmott et al. 2000).

Webs produced by the niche model have lower similarity
and higher omnivory degree than small empirical webs,
which indicates that obtaining a contiguous web with
lower connectance makes the trophic levels less distinct.

However, the algorithm webs still have a lower similarity
and higher omnivory degree than those produced by the
niche model.

The most noticeable effect of the permanence constraint
was to increase the mean and maximum short-weighted
trophic levels compared to those in impermanent webs.
This was consistently true across the range of web sizes
and remained true when impermanent webs were col-
lapsed back into their permanent subset (fig. A5 in the
online edition of the American Naturalist). As the trophic
level has a positive relationship with omnivory degree,
permanence also increased the latter; however, permanent
webs had fewer omnivores than the impermanent webs,
on average (fig. A6 in the online edition of the American
Naturalist), partly because some taller permanent webs
contained no omnivores at all.

The trophic levels in algorithm webs were also made
less distinct by frequently containing cycles (fig. 2). Gen-
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Table 1: Commonly reported food web attributes as predicted by the algorithms and the niche model of Williams and Martinez
(2000), averaged over small empirical EcoWEB webs, and measured in large empirical webs

Attribute

Food web–building algorithmsa Empirical websb

Control Permanent Impermanent Niche Small SP LRL BBL CB YE CD SMI

n 11–13 11–13 10–12 11 8–14 25 92 25 31 83 29 42
T .22 .21 .25 .25 .40 .04 0 0 .28 .38 0 .17
I .41 .43 .32 .32 .36 .92 .87 .68 .62 .53 .9 .69
B .36 .36 .43 .43 .23 .04 .13 .32 .1 .09 .1 .14
smax .33 .32 .34 .50 .62 .76 .76 .71 .34 .5 .72 .54
O/n .34 .33 .3 .23 .20 .6 … .36 .38 .53 .79 .6
Osw .72 .88 .74 .67 .43 �.8c �.8c �.8c �.8c �.8c �.8c �.8c

max (Osw) .97 1.16 .91 .78 .45 �1.8d �1.8d �1.8d �1.8d �1.8d �1.8d �1.8d

C .1 .1 .11 .11 .14 .32 .12 .17 .07 .06 .31 .12
TL 1.88 1.95 1.72 1.75 1.97 2.57 1.95 1.59 2.4 2.44 3.09 2.42
TLmax 3.07 3.3 2.81 2.87 2.88 3.36 3.65 3.43 3.42 4.06 4.29 4.28
SD(G) .96 .95 1.09 1.29 .86 .92 1.4 1.09 .71 1.16 .73 1.02
SD(V) .86 .75 .82 .81 1.28 .54 .57 .61 1.03 1.4 .6 .78
G 1.99 1.91 1.2 2.16 1.90 1–4e 1–4e 1–4e 1–4e 1–4e 1–4e 1–4e

V 1.68 1.55 1.54 1.64 2.91 1–5e 1–5e 1–5e 1–5e 1–5e 1–5e 1–5e

Note: For definitions of most attributes, see “Measuring Food Web Attributes”; see “Poor Predictions: Low Connectance and Indistinct Trophic Levels” for

the definition of C and “Detailed Description of Food Web Attributes,” in the online edition of the American Naturalist, for definitions of and TLmax. AllTL

attributes were calculated by Cattin et al. (2004), except mean and maximum trophic levels (TL), which are from Williams and Martinez (2004).
a Only larger food webs from the algorithms were included, so mean values were taken from 21 control, 21 permanent, and 22 impermanent webs. Niche-

model attributes were averaged over 100 randomly generated webs constrained so that they contained no cannibalism or mutual predation.
b Small empirical webs are nine webs taken from Schoenly et al. (1991): Madagascar pitcher plant (Beaver 1985), Hong Kong pitcher plant (Corker 1984),

England tree holes (Kitching 1983), two Australia tree holes (Kitching 1983), Costa Rica Heliconia (Seifert and Seifert 1976), Alabama stump hole (Kitching

and Pimm 1988), German tree hole (Kitching and Pimm 1988), and Texas rabbit carrion (Schoenly and Reid 1983). Large empirical webs: SP p Skipwith

Pond (Warren 1989; Williams and Martinez 2000), Rock Lake (Martinez 1991), Brook Lake (Havens 1992),LRL p Little BBL p Bridge CB p Chesapeake

Bay (Baird and Ulanowicz 1989), Estuary (Hall and Raffaelli 1991), Desert (Polis 1991), and Martin Island (GoldwasserYE p Ythan CD p Coachella SMI p St.

and Roughgarden 1993).
c Maximum of approximately 0.8 (Williams and Martinez 2004).
d Maximum of approximately 1.8 (Williams and Martinez 2004).
e Schoener 1989.

erally, as the size of the food web increases, the percentage
of webs with cycles increases. However, the fraction of
webs with cycles tends to be higher and to increase faster
for dynamically constrained webs than for the control.

The number of cycles and the number of species in-
volved in cycles was also high compared to those in real
webs. Many large, well-documented empirical webs con-
tain no cycles (e.g., Bridge Brook Lake [Havens 1992],
Ythan Estuary [Hall and Raffaelli 1991], the Coachella
Desert [Polis 1991], St. Martin Island [Goldwasser and
Roughgarden 1993]), and those that do have only a low
proportion of species involved in the cycle (e.g., 0.12 for
Skipwith Pond [Warren 1989] and 0.24 for Chesapeake
Bay [Baird and Ulanowicz 1989]). In contrast, the pro-
portion of species in a cycle in permanent webs with

ranged from 0.3 to 0.5, that in permanent websf p 0.2
with ranged from 0.33 to 0.75, that in imper-f p 0.8
manent webs with ranged from 0.27 to 0.8, andf p 0.2
that in impermanent webs with ranged from 0.25f p 0.8
to 0.63. In some cases, all heterotrophs were involved in
at least one cycle. This was true for 14 out of 24 permanent

webs containing cycles and for 16 of 31 impermanent
webs, for .f p 0.8

The motifs predicted by algorithms without trophic con-
straints (see “Trophic Constraints”) did not agree well with
the empirical webs (fig. 3). For all three-species patterns
and most four-species patterns, the algorithm predicted ei-
ther no tendency or motifs where there were antimotifs,
and vice versa. However, when simple trophic constraints
were imposed on the algorithms, agreement improved sub-
stantially, and only one motif was incorrectly predicted.

A Skewed Interaction Strength Distribution
Was Not Peculiar to Stable Webs

A skewed interaction strength distribution is associated
with local stability (McCann et al. 1998; Emmerson and
Raffaelli 2004), yet the algorithms produced similar pat-
terns under other pairings of the stable/unstable and per-
manent/impermanent web characteristics. Analyzing per-
biomass effects on predators (positive) and per-biomass
effects on prey (negative), skewness values over all food
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Figure 2: Percentage of food webs that contained at least one cycle for each size class. Cycles are trophic relationships of the form “A eats B, B
eats C, … eats A,” excluding cannibalism and mutual predation.

Figure 3: Trophic patterns that appeared as a motif (plus sign) or antimotif (minus sign) in at least one web from each set. Small empirical webs
were taken from Schoenly et al. (1991): Madagascar pitcher plant (Beaver 1985), Hong Kong pitcher plant (Corker 1984), two Australia tree holes
(Kitching 1983), and Texas rabbit carrion (Schoenly and Reid 1983). Large-empirical-web results were taken from Milo et al. (2002). Full algorithm
results can be found in “Supplementary Tables and Figures” in the online edition of the American Naturalist.

webs with flow-based trophic height greater than three
( ) were as follows: permanent-stable, 2.3 and �1.6f p 0.2
(from 69 webs totaling 578 interactions); permanent-
unstable, 2.3 and �1.4 (from 53 webs totaling 589 inter-
actions); impermanent-unstable, 2.7 and �1.2 (from 54
webs totaling 507 interactions). The impermanent-stable
set was too small to measure skew on. For all of the classes,
the log-transformed interaction strengths were signifi-
cantly different (Lilliefors test: all ) from a normalP ! .001
distribution (cf. Wootton 1997).

Using the same sizes, number of links, and number of
basal species as found for impermanent webs generated
by the feasible algorithm, 141 feasible webs with trophic
height greater than three were generated using random-
matrix methods (e.g., Gardner and Ashby 1970). Coeffi-
cients were drawn from a random standard uniform dis-

tribution. The skewness values of the interaction strength
were comparable to those above. For all unstable webs,
skewness was 2.8 and �1.6 (from 25 webs totaling 193
interactions), and webs that were both unstable and im-
permanent had skewness of 3.0 and �1.2 (from seven webs
totaling 65 interactions).

Discussion

Making Valid Comparisons

The food web–building algorithms produced webs with
low connectance and relatively indistinct trophic levels,
compared to real webs. However, directly comparing the
algorithm webs to the empirical webs is difficult, as al-
gorithm webs were much smaller than the large, well-
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documented empirical webs and had lower connectance
than the similar-sized, small empirical webs. It is known
that both size and connectance influence web attributes,
which are used as tunable parameters in ordered-niche
models.

The web size was constrained by the amount of biomass
the five autotrophs could provide. Further, larger webs
could not be created using the permanence algorithm by
simply increasing the number of autotrophs, because the
algorithm required the identification of subsets of the web,
and the number of these increases exponentially with web
size. This difficulty is peculiar to permanence, and readers
interested in creating larger webs may do so with relative
ease if some other dynamical constraint is chosen (e.g.,
numerical integration through time; Taylor 1988; Lock-
wood et al. 1997).

To address this mismatch of size and connectance, the
algorithm webs can be compared to the mean attributes
of webs of similar size and connectance produced by the
niche model (Williams and Martinez 2000). Comparing
the niche model and the small empirical webs suggests
that obtaining a contiguous web with lower connectance
does cause the trophic levels to become less distinct. How-
ever, the algorithm webs still had less distinct trophic levels
than those created by the niche model.

The Algorithms Produced Low-Connectance Webs
with Indistinct Trophic Levels

The likelihood of obtaining a stable web decreases with
increasing size and connectance (May 1972; Chen and
Cohen 2001). Although food web–building algorithms can
go some way to circumventing the connectance constraint
(Post and Pimm 1983; Taylor 1988; Drake 1990), the al-
gorithms in this article were not able to match the behavior
of real webs. Consequently, in order to obtain webs with
realistic connectance, dynamical algorithms will have to
be supplemented with additional stabilizing assumptions,
such as taking into account the body mass of the species
(Brose et al. 2006). Alternatively, connectance may be bet-
ter explained by the behavioral and morphological char-
acteristics of the species, such as foraging traits (Becker-
man et al. 2006), rather than dynamical constraints alone.

Because no trophic constraints were imposed on the
species in the web, it is unsurprising that they did not
form into distinct trophic levels. However, what is inter-
esting is that many of the mispredicted attributes of real
food webs can be related to this property: the underpre-
diction of mean maximum similarity and the overpredic-
tion of omnivory degree and cycling. Similarly, the motifs
and antimotifs predicted by the algorithms were almost
the opposite of those observed in real webs, and this was
corrected when a simple trophic hierarchy was imposed

on the webs. This implies that food web motifs are pri-
marily the result of trophic levels rather than the flow of
energy up the web, as previously suggested (Milo et al.
2002). Taken together, these results suggest that relatively
distinct trophic levels are an important aspect of what we
know about food web attributes and that dynamically con-
strained algorithms that do not include trophic constraints
will perform poorly at predicting web attributes (cf. Wil-
liams and Martinez 2004).

One explanation for the distinct trophic levels in food
webs is the physiology of the species. For example, body
size may restrict heterotrophs so that they can feed only
on species that are smaller and within a certain size range
(Cohen 1989b). The niche model performs better than the
dynamically constrained algorithms because, like other
ordered-niche models (cascade, nested hierarchy), it pre-
supposes that some trophic hierarchy exists and expresses
it in the form of a heuristic niche ordering on the species
(Stouffer et al. 2005). I know of only one dynamically
based model that can produce distinct trophic levels as an
emergent property—that is, without imposing them ex-
plicitly—and that is the Webworld algorithm (Drossel et
al. 2001).

The Effects of Different Dynamical Constraints

Of theoretical interest is the effect that the addition of each
dynamical constraint had on food web structure. For the
most part, the addition of permanence to feasibility did
not change the attributes much; however, it did increase
the trophic height of the webs. The reason for this was
that both the feasible and the permanent webs selected
heterotrophs with higher feeding efficiency (“Building the
Proof” in the online edition of the American Naturalist),
but the selection was stronger in permanent webs because
of the invasion process. Under the permanence constraint,
a successful invader i is one that satisfies ∗� �a g x �j, i i, j j

. In the preceding relationship, having a high effi-d 1 0i

ciency g increases the likelihood that a new species is a
successful invader. Thus, efficiency determines not only
which species can obtain enough biomass to stay feasible
but also which can enter the system in the first place.
Therefore, when less energy is dissipated in the trophic
interactions, as in permanent webs, then more species can
be maintained on the energy available, and the web can
be taller.

Both dynamically constrained algorithms produced a
greater proportion of webs containing cycles than the con-
trol. Cycling reuses energy that would otherwise be dis-
sipated, allowing more species to be maintained on the
same amount of autotroph-supplied energy. This suggests
that the cycling is being promoted by dynamically con-
strained food webs for energetic reasons. In contrast, well-
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documented empirical webs that are much larger than this
often contain no cycles (Hall and Raffaelli 1991; Havens
1992; Goldwasser and Roughgarden 1993), and this is true
even in webs that have high omnivory (Sprules and Bow-
erman 1988; Schmid-Araya et al. 2002), suggesting that
physiological constraints precede the energetic benefits of
cycling. In this article, imposing simple trophic constraints
that excluded cycles and limited omnivory posed no bar-
rier to satisfying feasibility or permanence, and previous
authors (Law and Morton 1996; Virgo et al. 2006) reported
no difficulties in obtaining permanent webs, given the
physiological constraints used in their algorithms.

Randomly generated food webs can have attributes sig-
nificantly different from those obtained via a food web–
building algorithm (Virgo et al. 2006). Consequently, gen-
eralizations made about webs produced under certain
constraints may no longer apply. For example, both cycling
and omnivory (Pimm 1982; Pimm and Rice 1987) are
thought to be destabilizing (but see Fagan 1997; McCann
and Hastings 1997), yet the dynamically constrained al-
gorithms produced webs with high values of both. This is
because the adaptive power of the assembly process allows
it to obtain atypical webs (cf. Post and Pimm 1983; Taylor
1988; Drake 1990). Therefore, if real food webs do behave
like a food web–building algorithm, this may make de-
tecting indicators of a dynamical constraint difficult.

Real food webs have a skewed distribution of interaction
strengths, with a few strong links embedded in a majority
of weak links (Paine 1992; Fagan and Hurd 1994; Wootton
1997; Neutel et al. 2002; Sala and Graham 2002; Emmerson
and Raffaelli 2004; Wootton and Emmerson 2005). Fur-
ther, it can be demonstrated that using a skewed distri-
bution of interaction strengths increases the probability of
a stable model food web (McCann et al. 1998; Emmerson
and Raffaelli 2004; Emmerson and Yearsley 2004), which
has led some authors to interpret the observed skew as
evidence of stability constraints acting on real webs (Em-
merson and Raffaelli 2004). Yet in this study, a similarly
skewed distribution of interaction strengths was obtained
for all dynamically constrained webs, including those that
were locally unstable and impermanent. Therefore, al-
though local stability may favor a skewed distribution, the
former is not a necessary condition for the latter, and a
skewed distribution can arise through other means (cf.
Kokkoris et al. 1999).

Conclusion

In closing their review of food web attributes, Hall and
Raffaelli (1993) suggested that simulated food web assem-
bly and the permanence constraint were promising ave-
nues for investigating the cause of patterns observed in
real food webs. However, in this work, it was found that

permanent webs lacked the key properties of real webs and
that adding permanence as a constraint did not improve
the predictive ability over feasibility alone. While disap-
pointing, this result provides a counterweight to any po-
tential “publication bias,” whereby the predictive successes
of stability constraints are widely known but the areas in
which they fail are not.

In contrast, the ordered-niche models used by other
authors have been very successful at predicting the struc-
ture of real food webs (e.g., Williams and Martinez 2000;
Cattin et al. 2004). As a heuristic based on the physiology
of species is a more parsimonious explanation for food
web pattern than dynamical constraints, this implies that
the former is the best explanation we have for what is
currently known about food web structure.

The literature suggests that, provided that some assem-
bly algorithm is used, dynamical constraints are fairly ame-
nable to being satisfied regardless of other structural con-
straints imposed. Taken together with this study’s main
result, this suggests that it is physiology that determines
the coarse structure of food webs and that dynamics will
augment only the finer details within those constraints.
This, in turn, suggests that detecting the effects of dynam-
ics on structure will be difficult.

Nevertheless, there is evidence that real food webs have
a structure peculiarly suited to promoting stability, par-
ticularly when interaction strengths are accounted for
(Yodzis 1981; de Ruiter et al. 1995; Neutel et al. 2002).
However, it is difficult to summarize these idiosyncratic
high-stability states in one simple measure. Slight changes
in food web topology can greatly change the stability of a
web (Fox 2006). Where such measures are known, they
often require detailed information on species interactions
(e.g., those identified by Chen and Cohen [2001]). In con-
trast, the easily measured attributes that have been used,
which are those for which the most empirical data exist,
are relatively insensitive to small changes in food web to-
pology (cf. Fox 2006). So while physiological constraints
may be the best current explanation of web structure, this
should be qualified by noting that what we know about
food web structure may well be restricted to those aspects
that are determined by physiological constraints to begin
with.

Despite the inadequacy of the dynamically constrained
food web–building algorithms, they do have one com-
pelling advantage over the ordered-niche algorithms: in
order for the cascade model, niche model, or nested hi-
erarchy to be used, one must provide it with the desired
number of species and links in the web. In contrast, the
dynamically constrained food web produces these as emer-
gent properties—a consequence of the energy flow and
stability constraints on it. Consequently, hybrid models
where minimal dynamical constraints are combined with
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physiological constraints, such as Webworld (Drossel et al.
2001), show much promise.
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