Association of Overweight With Increased Risk of Coronary Heart Disease Partly Independent of Blood Pressure and Cholesterol Levels

A Meta-analysis of 21 Cohort Studies Including More Than 300,000 Persons

Rik P. Bogers, PhD; Wanda J. E. Bemelmans, PhD; Rudolf T. Hoogenveen, MSc; Hendriek C. Boshuizen, PhD; Mark Woodward, PhD; Paul Knekt, PhD; Rob M. van Dam, PhD; Frank B. Hu, MD, PhD; Tommy L. S. Visscher, PhD; Alessandro Menotti, MD, PhD; Roland J. Thorpe Jr, PhD; Konrad Jamrozik, DPhil; Susanna Calling, MD, PhD; Bjørn Heine Strand, PhD; Martin J. Shipley, MSc; for the BMI-CHD Collaboration Investigators

Background: The extent to which moderate overweight (body mass index [BMI], 25.0-29.9 [calculated as weight in kilograms divided by height in meters squared]) and obesity (BMI, ≥ 30.0) are associated with increased risk of coronary heart disease (CHD) through adverse effects on blood pressure and cholesterol levels is unclear, as is the risk of CHD that remains after these mediating effects are considered.

Methods: Relative risks (RRs) of CHD associated with moderate overweight and obesity with and without adjustment for blood pressure and cholesterol concentrations were calculated by the members of a collaboration of prospective cohort studies of healthy, mainly white persons and pooled by means of random-effects models (RRs for categories of BMI in 14 cohorts and for continuous BMI in 21 cohorts; total N=302,296).

Results: A total of 18,000 CHD events occurred during follow-up. The age-, sex-, physical activity–, and smoking-adjusted RRs (95% confidence intervals) for moderate overweight and obesity compared with normal weight were 1.32 (1.24-1.40) and 1.81 (1.56-2.10), respectively. Additional adjustment for blood pressure and cholesterol levels reduced the RR to 1.17 (1.11-1.23) for moderate overweight and to 1.49 (1.32-1.67) for obesity. The RR associated with a 5-unit BMI increment was 1.29 (1.22-1.35) before and 1.16 (1.11-1.21) after adjustment for blood pressure and cholesterol levels.

Conclusions: Adverse effects of overweight on blood pressure and cholesterol levels could account for about 45% of the increased risk of CHD. Even for moderate overweight, there is a significant increased risk of CHD independent of these traditional risk factors, although confounding (eg, by dietary factors) cannot be completely ruled out.

Arch Intern Med. 2007;167(16):1720-1728

MODERATE OVERWEIGHT (body mass index [BMI], 25.0-29.9 [calculated as weight in kilograms divided by height in meters squared]) and obesity (BMI, ≥ 30.0) (both henceforth called “overweight”) are highly prevalent in Western populations. Nearly two-thirds of US adults1 and 60% of Australians2 are overweight, and increasing trends are apparent throughout the world.3 Obesity is clearly associated with increased mortality4,5 and adverse health outcomes, including coronary heart disease (CHD).6 Because of the high prevalence of overweight and the expected future increases, it is essential to gain precise insight into the consequences of overweight for health and into the metabolic pathways that link the two. This study investigated the relationship between overweight and CHD and, specifically, the extent to which this relationship is mediated by adverse effects of overweight on blood pressure and cholesterol levels. This research is relevant to clinical practice because it provides an indication about the excess risk of CHD in overweight people that would persist after optimal treatment for hypertension and hypercholesterolemia was established. Furthermore, it addresses the question whether to incorporate overweight as an additional modifiable risk factor in commonly used risk stratification schemes such as Adult Treatment Panel III or Framingham.7,8 According to Adult Treatment Panel III, the inde-
ependent component of risk not mediated through the major risk factors has not been quantified. Recently, cohort investigations have demonstrated that overweight is related to CHD apart from its association with traditional risk factors such as blood pressure and cholesterol levels.9,10 Another recent publication showed that the association between overweight and death from atherosclerotic cardiovascular causes was attenuated to statistically nonsignificant levels after adjustment for blood pressure, cholesterol level, and blood glucose level.11 An analysis based on many prospective cohort studies would add to the available evidence.

The present report describes a meta-analysis of the associations between overweight and risk of CHD for 302,296 healthy persons, mainly white. We report pooled estimates of relative risk (RR) adjusted in a standardized way from 21 prospective cohort studies. We report pooled estimates of relative risks with equivalent adjustments for smoking, physical activity, and blood pressure, and cholesterol levels. To minimize the amount of work and maximize participation, investigators could calculate the RRs of CHD in a way similar to that used in the original articles, eg, for the same BMI categories and follow-up time.

An appendix (available at the authors' Web site) presents the methods that were used in the original studies to define smoking habits, physical activity, blood pressure, and blood cholesterol level, and whether BMI was analyzed as a continuous variable or in categories. One cohort (Nurses' Health Study) used BMI based on self-reported weight and height, instead of measurements. Adjustment for smoking was generally conducted by inclusion of dummy variables to indicate never-smokers, ex-smokers, and current smokers in the multiple regression model. For blood pressure, the majority of studies (n=15) used systolic blood pressure, and for blood cholesterol concentrations, total cholesterol (n=19). Other measures were, for instance, diastolic blood pressure and elevated total cholesterol concentrations (yes or no). Physical activity was predominantly defined by means of various categories of intensity, but there was considerable diversity between studies. Descriptive statistics for each cohort (eg, mean age, follow-up time, mean BMI in each category, number of persons, and cases of CHD per category) and the definition of the variables were checked by the original investigators.

DATA SYNTHESIS

We requested that investigators from the participating cohort studies calculate RRs and 95% confidence intervals (CIs) with systematic univariate and multiple adjustments for age, sex, physical activity, smoking, blood pressure, and cholesterol levels. To minimize the amount of work and maximize participation, investigators could calculate the RRs of CHD in a way similar to that used in the original articles, eg, for the same BMI categories and follow-up time.

An appendix (available at the authors' Web site) presents the methods that were used in the original studies to define smoking habits, physical activity, blood pressure, and blood cholesterol level, and whether BMI was analyzed as a continuous variable or in categories. One cohort (Nurses' Health Study) used BMI based on self-reported weight and height, instead of measurements. Adjustment for smoking was generally conducted by inclusion of dummy variables to indicate never-smokers, ex-smokers, and current smokers in the multiple regression model. For blood pressure, the majority of studies (n=15) used systolic blood pressure, and for blood cholesterol concentrations, total cholesterol (n=19). Other measures were, for instance, diastolic blood pressure and elevated total cholesterol concentrations (yes or no). Physical activity was predominantly defined by means of various categories of intensity, but there was considerable diversity between studies. Descriptive statistics for each cohort (eg, mean age, follow-up time, mean BMI in each category, number of persons, and cases of CHD per category) and the definition of the variables were checked by the original investigators.

DATA EXTRACTION

We requested that investigators from the participating cohort studies calculate RRs and 95% confidence intervals (CIs) with systematic univariate and multiple adjustments for age, sex, physical activity, smoking, blood pressure, and cholesterol levels. To minimize the amount of work and maximize participation, investigators could calculate the RRs of CHD in a way similar to that used in the original articles, eg, for the same BMI categories and follow-up time.

An appendix (available at the authors' Web site) presents the methods that were used in the original studies to define smoking habits, physical activity, blood pressure, and blood cholesterol level, and whether BMI was analyzed as a continuous variable or in categories. One cohort (Nurses' Health Study) used BMI based on self-reported weight and height, instead of measurements. Adjustment for smoking was generally conducted by inclusion of dummy variables to indicate never-smokers, ex-smokers, and current smokers in the multiple regression model. For blood pressure, the majority of studies (n=15) used systolic blood pressure, and for blood cholesterol concentrations, total cholesterol (n=19). Other measures were, for instance, diastolic blood pressure and elevated total cholesterol concentrations (yes or no). Physical activity was predominantly defined by means of various categories of intensity, but there was considerable diversity between studies. Descriptive statistics for each cohort (eg, mean age, follow-up time, mean BMI in each category, number of persons, and cases of CHD per category) and the definition of the variables were checked by the original investigators.

DATA SYNTHESIS

Dummy variables indicated whether adjustments were made for smoking, physical activity, blood pressure, and cholesterol levels. The RRs were plotted to visualize variation in results between studies. Relative risks with equivalent adjustments were pooled by means of a random effects model12 and were calculated for the categories moderate overweight (BMI, 25.0-29.9) and obesity (BMI, ≥ 30.0), as compared with the reference category (‘normal’ weight; BMI, 18.5-24.9). Studies were selected in which the foregoing definition of the overweight categories was used. In this selection, the lower limit of the normal weight category varied somewhat between cohorts (see the appendix at the author's Web site). Therefore, the meta-analysis was also performed in subsets with equal lower limits. These analyses showed that the percentage decrease in RR after adjustment for blood pressure and cholesterol levels was similar (data not shown). The final number of cohorts for the analyses of the categories moderate overweight and obesity was 14.

We also calculated risk of CHD by using BMI as a continuous variable, eg, risk per 5-unit increase in BMI. In this case, if individual studies had provided only RRs for categories of BMI, we transformed the independent variable to its continuous form for each set of adjustments by applying the method of Greenland and Longnecker,13 but using number of cases as observed rather than their fitted values.14 Consequently, more cohorts were available for these analyses (n=21) than for the analyses of categories of BMI.

Statistical significance of the change in RR after adjusting for blood pressure and cholesterol level was assessed by means of meta-regression analysis (in which results stemming from a single study shared the same random effect). The analyses were repeated for cohorts with measured BMI (instead of BMI based on self-reported weight and height of the participants) and cohorts in which measures for blood pressure and cholesterol concentrations were systolic blood pressure and total cholesterol concentrations (instead of, eg, diastolic blood pressure). Heterogeneity of RRs between studies was examined by χ2 tests. All analyses were performed with the MIXED procedure in SAS statistical software, version 9 (SAS Institute Inc, Cary, NC).15-36

RESULTS

CHARACTERISTICS OF COHORTS

Table 1 presents characteristics of the study populations, which included a total of 302,296 persons. Most studies used either mortality from CHD or incidence of CHD (both fatal and nonfatal events) as their end point. A total of 18,000
<table>
<thead>
<tr>
<th>Study</th>
<th>Sex, % M</th>
<th>Age Range, y</th>
<th>Baseline Year(s)</th>
<th>Median or Mean Follow-up, y</th>
<th>Current Smoker, %</th>
<th>No. for Analysis</th>
<th>No. of Cases</th>
<th>End Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian National Heart Foundation Risk Factor Prevalence Study15</td>
<td>49</td>
<td>20-70</td>
<td>1989-1990</td>
<td>8.3</td>
<td>24</td>
<td>9099</td>
<td>76</td>
<td>Death from CHD: ICD-9 codes 410-414</td>
</tr>
<tr>
<td>Caerphilly Cohort Study16,17a</td>
<td>100</td>
<td>47-67</td>
<td>1984-1988</td>
<td>12</td>
<td>44</td>
<td>2160-2357</td>
<td>398</td>
<td>Fatal and nonfatal events: death from CHD; clinical nonfatal (definite acute) MI; electrocardiographic MI</td>
</tr>
<tr>
<td>Fletcher Challenge20</td>
<td>72</td>
<td>20-89</td>
<td>1992</td>
<td>4.8</td>
<td>24</td>
<td>10201</td>
<td>110</td>
<td>Death from CHD</td>
</tr>
<tr>
<td>Italian Rural Areas21a</td>
<td>100</td>
<td>40-59</td>
<td>1960</td>
<td>35</td>
<td>61</td>
<td>1622</td>
<td>214</td>
<td>Death from CHD: definite fatal MI; other forms of fatal ischemia; sudden death from CHD</td>
</tr>
<tr>
<td>Kuopio Ischaemic Heart Disease Risk Factor Study22</td>
<td>100</td>
<td>42-61</td>
<td>1984-1989</td>
<td>10.6</td>
<td>31</td>
<td>1597</td>
<td>155</td>
<td>Fatal and nonfatal events: definite and probable acute MI; prolonged chest pain episodes</td>
</tr>
<tr>
<td>Malmö Preventive Project23</td>
<td>100</td>
<td>27-61</td>
<td>1974-1984</td>
<td>17.7</td>
<td>49</td>
<td>22025</td>
<td>1727</td>
<td>Fatal and nonfatal events: acute MI (ICD code 410); death from chronic CHD (ICD codes 412 and 414)</td>
</tr>
<tr>
<td>Melbourne Collaborative Cohort Study24</td>
<td>41</td>
<td>27-75</td>
<td>1990-1994</td>
<td>5.6</td>
<td>11</td>
<td>41119</td>
<td>323</td>
<td>Death from CHD</td>
</tr>
<tr>
<td>Multifactor Primary Prevention Study, Göteborg25</td>
<td>100</td>
<td>47-55</td>
<td>1970-1973</td>
<td>22</td>
<td>50</td>
<td>7371</td>
<td>1688</td>
<td>Fatal and nonfatal events: death from CHD (ICD-8/9 codes 410-414); nonfatal MI</td>
</tr>
<tr>
<td>NHANES I Epidemiologic Follow-up Study26</td>
<td>44</td>
<td>25-74</td>
<td>1971-1975</td>
<td>20</td>
<td>45</td>
<td>5139/5078</td>
<td>543</td>
<td>Death from CHD: ICD-9 codes 410-414.9</td>
</tr>
<tr>
<td>Nijmegen Cohort Study27</td>
<td>48</td>
<td>20-52</td>
<td>1977-1978</td>
<td>18</td>
<td>58</td>
<td>5898</td>
<td>268</td>
<td>Fatal and nonfatal events: MI; angina pectoris</td>
</tr>
<tr>
<td>Norwegian Counties Study28</td>
<td>51</td>
<td>35-49</td>
<td>1974-1978</td>
<td>26</td>
<td>45</td>
<td>43896</td>
<td>1564</td>
<td>Death from CHD: ICD-8/9 codes 410-414. ICD-10 codes I21-I25; sudden deaths (ICD-8 codes 782.4 and 795; ICD-9 codes 798.1-798.2; ICD-10 code R96)</td>
</tr>
<tr>
<td>Nurses’ Health Study29b</td>
<td>0</td>
<td>34-59</td>
<td>1980</td>
<td>20</td>
<td>28</td>
<td>76615</td>
<td>1996</td>
<td>Fatal and nonfatal events: death from CHD; nonfatal MI; sudden death within 1 h of onset of symptoms in women with no plausible cause other than CHD</td>
</tr>
<tr>
<td>PRIME Study30a</td>
<td>100</td>
<td>50-59</td>
<td>1991-1993</td>
<td>5</td>
<td>28</td>
<td>9757</td>
<td>317</td>
<td>Fatal and nonfatal events: MI; death from CHD; angina pectoris</td>
</tr>
<tr>
<td>Rome Railroad Cohort31a</td>
<td>100</td>
<td>40-59</td>
<td>1962</td>
<td>25</td>
<td>66</td>
<td>726</td>
<td>88</td>
<td>Death from CHD: definite fatal MI; sudden death from CHD; cases judged of CHD origin although manifested only as heart failure, arrhythmia, and blocks</td>
</tr>
<tr>
<td>Scottish Heart Health Study32</td>
<td>51</td>
<td>40-59</td>
<td>1984-1987</td>
<td>7.6</td>
<td>39</td>
<td>10262</td>
<td>171</td>
<td>Fatal and nonfatal events: MI; coronary artery surgery; death from CHD</td>
</tr>
<tr>
<td>US Railroad Cohort31a</td>
<td>100</td>
<td>40-59</td>
<td>1957-1959</td>
<td>25</td>
<td>60</td>
<td>2415</td>
<td>481</td>
<td>Death from CHD: definite fatal MI; sudden death from CHD; cases judged of CHD origin although manifested only as heart failure, arrhythmia, and blocks</td>
</tr>
<tr>
<td>Ventimiglia di Sicilia Heart Study33a</td>
<td>43</td>
<td>20-69</td>
<td>1989</td>
<td>8</td>
<td>17</td>
<td>835</td>
<td>8</td>
<td>Death from CHD: defined MI; sudden death</td>
</tr>
<tr>
<td>Whitehall Study34,35</td>
<td>100</td>
<td>40-64</td>
<td>1967-1969</td>
<td>33</td>
<td>41</td>
<td>17475</td>
<td>3503</td>
<td>Death from CHD: ICD-8 codes 410-414</td>
</tr>
<tr>
<td>Zutphen Elderly Study36</td>
<td>100</td>
<td>64-84</td>
<td>1985</td>
<td>10.3</td>
<td>33</td>
<td>575</td>
<td>83</td>
<td>Death from CHD: ICD-8 codes 410-414</td>
</tr>
</tbody>
</table>

Abbreviations: CHD, coronary heart disease; ICD, International Classification of Disease (-8, -9, and -10 indicate the revision number; CM, Clinical Modification); MI, myocardial infarction; NHANES, National Health and Nutrition Examination Survey; PRIME, Prospective Epidemiological Study of Myocardial Infarction.

*No results available for both the categories moderate overweight (body mass index, 25.0-29.9 [calculated as weight in kilograms divided by height in meters squared]) and obesity (body mass index, \(\geq 30.0 \)).

*Body mass index based on self-report of the participants.
CHD events were observed during follow-up. We were able to extend follow-up for some studies beyond that reported in the original articles. Table 1 presents the data as used in the present analysis.

RRs FOR MODERATE OVERWEIGHT AND OBESITY

Figure 1 and **Figure 2** present the RRs of CHD for the separate cohorts for categories of moderate overweight and obesity, adjusted for age, sex, physical activity, and smoking, with and without adjustment for blood pressure and cholesterol concentrations. In all individual studies, the RR decreased after adjustment for blood pressure and cholesterol concentrations. Additional adjustment for blood pressure and cholesterol levels statistically significantly reduced the RR to 1.17 (95% CI, 1.11-1.23) for moderate overweight and 1.49 (95% CI, 1.32-1.67) for obesity. This corresponds to a decrease in excess risk of 47% for moderate overweight and 40% for obesity, i.e., \([1.81 - 1.49] / (1.81 - 1)\) × 100 = 40%.

The RRs were similar for studies in which BMI was measured (n=13) instead of based on self-reported weight and height, and for studies
in which BMI was measured and adjustments were made for systolic blood pressure and total cholesterol levels (n=11; instead of other indicators such as diastolic blood pressure [the appendix at the authors’ Web site] shows which measures of blood pressure and cholesterol levels were used]). In the latter subset of studies, the risk of CHD decreased statistically significantly by 50% for moderate overweight and 43% for obesity after additional adjustment for blood pressure and cholesterol levels.

RR ASSOCIATED WITH A 5-UNIT INCREASE IN BMI

When BMI was analyzed as a continuous variable, the age-, sex-, physical activity–, and smoking-adjusted RR associated with a 5-unit increase was 1.29 (95% CI, 1.22-1.35; n=21; Table 3). After excluding participants with a BMI less than 20, this RR was similar (n=6 studies, not shown). The range between studies was 0.95 to 1.73. Additional adjustment for blood pressure and cholesterol level lowered the excess risk by 45% to 1.16 (95% CI, 1.11-1.21; range, 0.83-1.87). Significant heterogeneity existed between studies both with and without adjustment for blood pressure and cholesterol concentrations (P<.001).

COMMENT

In this large meta-analysis, involving 302,296 participants worldwide and 18,000 CHD events during follow-up, a 5-unit increment in BMI...
regression analysis suggests that the case in all studies, despite the ob-
jective variables. It is clearly shown that adjusting for blood pressure and
cholesterol decreases the estimated risk of CHD and, after additional
adjustment for blood pressure and cholesterol levels.

was associated with a 29% increase in risk of CHD and, after additional
adjustment for blood pressure and cholesterol levels, with a 16% in-
creased risk. Hence, the present study indicates that adverse effects of over-
weight on blood pressure and cholesterol levels could account for about 45% of
the increased risk of CHD, and that there is still a significantly increased risk of
CHD that is independent of these effects.

The strength of our analysis lies in the large number of cohorts and the
systematic adjustments for relevant variables. It is clearly shown that adjusting for blood pressure and cholesterol decreases the estimated
RR of CHD substantially. This was the case in all studies, despite the ob-
served heterogeneity in RRs. Meta-
regression analysis suggests that causes of heterogeneity are the age of
the population and the follow-up time, but not, for example, the end point that
was used (fatal and nonfatal incidence vs mortality of CHD) (data not shown). We did
not exclude the first years of follow-up in our analysis to account for
undiagnosed preexisting disease that may cause weight loss and death,
leading to a J-shaped BMI-mortal-
ity curve. Previous research showed that this effect of excluding early
deaths is only marginal.37 In general, publication bias, ie, less fre-
quent publication of studies with ab-
sent or negative associations between
BMI and CHD, could have in-
excluded in our analysis also re-
lected in the actual results of a study. The ma-
jority of the eligible studies not in-
cluded in our analysis also re-
jected overweight is associated with
moderate overweight and obesity
compared with normal weight.

Table 2. Relative Risks (RRs) of Coronary Heart Disease for Moderate Overweight and Obesity Compared With Normal Weighta

<table>
<thead>
<tr>
<th>Selection (No. of Studies)</th>
<th>RR (95% CI) for Moderate Overweight</th>
<th>P Value for Heterogeneity</th>
<th>RR (95% CI) for Obesity</th>
<th>P Value for Heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>All studies (14)</td>
<td>1.32 (1.24-1.40)</td>
<td>.007</td>
<td>1.81 (1.56-2.10)</td>
<td><.001</td>
</tr>
<tr>
<td>BMI measured (13)</td>
<td>1.29 (1.22-1.37)</td>
<td>.12</td>
<td>1.72 (1.52-1.96)</td>
<td><.001</td>
</tr>
<tr>
<td>BMI measured, systolic blood pressure and total cholesterol (11)c</td>
<td>1.32 (1.24-1.40)</td>
<td>.26</td>
<td>1.68 (1.45-1.97)</td>
<td><.001</td>
</tr>
</tbody>
</table>

Additionally Adjusted for Blood Pressure and Cholesterol

<table>
<thead>
<tr>
<th>Selection (No. of Studies)</th>
<th>RR (95% CI)</th>
<th>P Value for Heterogeneity</th>
<th>RR (95% CI)</th>
<th>P Value for Heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>All studies (14)</td>
<td>1.17 (1.11-1.23)</td>
<td>.15</td>
<td>1.49 (1.32-1.67)</td>
<td><.001</td>
</tr>
<tr>
<td>BMI measured (13)</td>
<td>1.14 (1.09-1.18)</td>
<td>.88</td>
<td>1.41 (1.31-1.53)</td>
<td>.11</td>
</tr>
<tr>
<td>BMI measured, systolic blood pressure and total cholesterol (11)c</td>
<td>1.16 (1.11-1.21)</td>
<td>.96</td>
<td>1.39 (1.26-1.53)</td>
<td>.10</td>
</tr>
</tbody>
</table>

Table 3. Relative Risks (RRs) of Coronary Heart Disease per 5-Unit Increase in BMI With and Without Adjustments for Blood Pressure and Cholesterol Levels

<table>
<thead>
<tr>
<th>Selection (No. of Studies)</th>
<th>RR (95% CI) Adjusted for Age, Sex, Physical Activity, and Smoking</th>
<th>P Value for Heterogeneity</th>
<th>RR (95% CI) Additionally Adjusted for Blood Pressure and Cholesterol</th>
<th>P Value for Heterogeneity</th>
<th>P Value for Heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>All studies (21)</td>
<td>1.29 (1.22-1.35)</td>
<td><.001</td>
<td>1.16 (1.11-1.21)</td>
<td><.001</td>
<td><.001</td>
</tr>
<tr>
<td>BMI measured (20)</td>
<td>1.27 (1.21-1.33)</td>
<td><.001</td>
<td>1.15 (1.11-1.19)</td>
<td>.04</td>
<td><.001</td>
</tr>
<tr>
<td>BMI measured, systolic blood pressure and total cholesterol (15)c</td>
<td>1.28 (1.20-1.36)</td>
<td><.001</td>
<td>1.15 (1.11-1.20)</td>
<td>.04</td>
<td><.001</td>
</tr>
</tbody>
</table>
this was already no point of debate). Because high blood pressure and cholesterol levels are plausible intermediary factors in the causal pathways linking overweight and CHD, adjusting for them—in epidemiological analyses—certainly results in underestimating the total public health impact of overweight. Second, the fact that the RR of CHD remained statistically significant after adjustment for these intermediary factors adds to the evidence that overweight itself increases CHD risk independent of traditional risk factors. This implies that, even under the theoretical scenario that optimal treatment would be available against hypertension and hypercholesterolemia in overweight persons, they still would have an elevated risk of CHD. It also implies that overweight, which is easily measured, may be considered to be incorporated as an additional risk factor in commonly used risk stratification schemes such as Adult Treatment Panel III7 and the Framingham CHD prediction algorithm,8 even though the exact mechanism that underlies an “independent” effect remains to be resolved.

The present estimate of the RR adjusted for blood pressure and cholesterol level, ie, 1.16 per 5 BMI units, is similar to the recently reported RR of hospitalization for CHD of 1.16 per 4 BMI units after adjustment for smoking, systolic blood pressure, and total cholesterol level.9 Because hypertension is correlated with other features of the metabolic syndrome, such as fasting serum glucose level,11,12 part of the reduction in the RR after adjustment for blood pressure may be caused by adjustment for these correlated variables, resulting in an overestimate of the excess risk of CHD mediated by blood pressure and cholesterol concentrations. On the other hand, the use of a single measurement of blood pressure and cholesterol, as opposed to repeated measurements, may have underestimated the effect of adjustment for these variables.39 Several mechanisms could underlie an effect of overweight on CHD independent of traditional risk factors. These include a state of low-grade inflammation, endothelial dysfunction, hemostatic imbalance favoring coagulation, impaired endothelial vasodilatory responses, left ventricular hypertrophy due to an increased blood volume, and reduced heart rate variability due to withdrawal of vagal activity and sympathetic predominance.40 Obviously, overweight is associated with increased risk of type 2 diabetes mellitus.41 In Adult Treatment Panel III, obesity is not listed as a risk factor because it is said to operate through diabetes (and other risk factors).2 Therefore, inclusion of data on diabetes or glucose intolerance in
our analysis (which were not available for the meta-analysis) would have further attenuated the RR of CHD associated with overweight. Indeed, a large Korean cohort study\(^4\) showed that the RR of death from atherosclerotic cardiovascular causes decreased considerably after adjustment for blood pressure, cholesterol level, and fasting blood glucose level. Interestingly, the authors stated that, in addition to these factors, other consequences of increased BMI are likely to contribute to the risk of cardiovascular disease.

Before invoking the plausible pathways mentioned previously, some alternative explanations for our findings must be mentioned. There may have been confounders for which we were unable to adjust, and that themselves, rather than overweight, determine the risk of CHD. For instance, we did not control for diet, which has been shown to be related to CHD,\(^2\) because detailed dietary data were usually not available. However, in the Nurses' Health Study—the largest study included—adjustment for diet had virtually no impact on the association between BMI and risk of CHD.\(^2\) Other possible confounders are smoking and physical activity, which we were unable to adjust, and which themselves, rather than overweight, determine the risk of CHD. Although effects of confounders, such as specific dietary factors, cannot be completely ruled out, negative effects will be exerted both through adverse influences on blood pressure and cholesterol levels (accounting for approximately 45% of the increased risk) and through other pathways.

We conclude that moderate overweight and obesity are associated with a significant increase in risk of CHD, and thus that the worldwide increase in (moderate) overweight may drive the incidence of CHD upward. Although effects of confounders, such as specific dietary factors, cannot be completely ruled out, negative effects will be exerted both through adverse influences on blood pressure and cholesterol levels (accounting for approximately 45% of the increased risk) and through other pathways.

Accepted for Publication: March 30, 2007.

Author Affiliations: Centre for Prevention and Health Services Research (Drs Bogers, Bemelmans, and Visscher and Mr Hoogven and Fe) and Expertise Centre for Methodology and Information Services (Dr Boshuizen), National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Epidemiology and Biostatistics Division, The George Institute, Sydney, Australia (Dr Woodward); Department of Health and Functional Capacity, National Public Health Institute, Helsinki, Finland (Dr Knekt); Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts (Drs van Dam and Hu); Institute for Health Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, the Netherlands (Drs van Dam and Visscher); Association for Cardiac Research, Rome, Italy (Dr Menotti); Division of Geriatric Medicine and Gerontology, Center on Aging and Health, and the Center for Health Disparities Solutions, The Johns Hopkins Medical Institutions, Baltimore, Maryland (Dr Thorpe); School of Population Health, University of Queensland, Herston, Australia (Dr Jamrozik); Department of Clinical Sciences in Malmo, Epidemiological Research Group, Lund University, Malmo University Hospital, Malmo, Sweden (Dr Calling); Division of Epidemiology, Norwegian Institute of Public Health, Oslo (Dr Strand); and Department of Epidemiology and Public Health, University College London, London, England (Mr Shipley).

Correspondence: Rik P. Bogers, PhD, Centre for Prevention and Health Services Research, National Institute for Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, the Netherlands (rik.bogers@rivm.nl).

Author Contributions: Dr Bogers had full access to all of the data in the study (that were provided to him by the collaborating investigators) and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Bogers and Bemelmans. Acquisition of data: Bogers, Woodward, and Menotti. Analysis and interpretation of data: Bogers, Bemelmans, and Boshuizen. Drafting of the manuscript: Bogers and Bemelmans. Critical revision of the manuscript for important intellectual content: Bogers, Bemelmans, Hoogven, Boshuizen, Woodward, Knekt, van Dam, Hu, Visscher, Menotti, Thorpe, Jamrozik, Calling, Strand, and Shipley. Study supervision: Bemelmans. All other investigators of the collaboration contributed by collecting data and calculating RRs. Financial Disclosure: None reported.

Additional Contributions: Federica Barzi, PhD, helped with data extraction and analysis of some of the Australian and New Zealand studies.
REFERENCES

22. Lakka HM, Lakka TA, Tuomilehto J, Salonen JT. Abdominal obesity is associated with increased risk of acute coronary events in men. Eur Heart J 2002;23(9):706-713.

