Randomised controlled trial of four commercial weight loss programmes in the UK: initial findings from the BBC "diet trials"

Helen Truby, Sue Baic, Anne deLooy, Kenneth R Fox, M Barbara E Livingstone, Catherine M Logan, Ian A Macdonald, Linda M Morgan, Moira A Helen Truby, Sue Baic, Anne deLooy, Kenneth R Fox, M Barbara E Livingstone, Catherine M Logan, Ian A Macdonald, Linda M Morgan, Moira A

 BMJ 2006;332;1309-1314; originally published online 23 May 2006; doi:10.1136/bmj.38833.411204.80

Updated information and services can be found at:
http://bmj.com/cgi/content/full/332/7553/1309

These include:

References
This article cites 14 articles, 5 of which can be accessed free at:
http://bmj.com/cgi/content/full/332/7553/1309#BIBL

4 online articles that cite this article can be accessed at:
http://bmj.com/cgi/content/full/332/7553/1309#otherarticles

Rapid responses
6 rapid responses have been posted to this article, which you can access for free at:
http://bmj.com/cgi/content/full/332/7553/1309#responses

You can respond to this article at:
http://bmj.com/cgi/eletter-submit/332/7553/1309

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top left of the article

Topic collections
Articles on similar topics can be found in the following collections

Randomized Controlled Trials: examples (568 articles)
Obesity (279 articles)

Correction
A correction has been published for this article. The contents of the correction have been appended to the original article in this reprint. The correction is available online at:
http://bmj.com/cgi/content/full/332/7555/1418-c

Notes

To order reprints follow the "Request Permissions" link in the navigation box

To subscribe to BMJ go to:
http://resources.bmj.com/bmj/subscribers
Randomised controlled trial of four commercial weight loss programmes in the UK: initial findings from the BBC “diet trials”

Helen Truby, Sue Baic, Anne deLooy, Kenneth R Fox, M Barbara E Livingstone, Catherine M Logan, Ian A Macdonald, Linda M Morgan, Moira A Taylor, D J Millward

Abstract

Objective To compare the effectiveness of four commercial weight loss diets available to adults in the United Kingdom.

Design Six month multicentre randomised unblinded controlled trial.

Setting Community based sample of otherwise healthy overweight and obese adults.

Interventions Dr Atkins’ new diet revolution, Slim-Fast plan, Weight Watchers pure points programme, and Rosemary Conley’s eat yourself slim diet and fitness plan.

Main outcome measures Weight and body fat changes over six months.

Results All diets resulted in significant loss of body fat and weight over six months. Groups did not differ significantly but loss of body fat and weight was greater in all groups compared with the control group. In an intention to treat analysis, average weight loss was 5.9 kg and average fat loss was 4.4 kg over six months. The Atkins diet resulted in significantly higher weight loss during the first four weeks, but by the end was no more or less effective than the other diets.

Conclusions Clinically useful weight loss and fat loss can be achieved in adults who are motivated to follow commercial diets for a substantial period. Given the limited resources for weight management in the NHS, healthcare practitioners should discuss with their patients programmes known to be effective.

Trial registration Clinical trials NCT00327821.

Introduction

The prevalence of obesity and its comorbidities is increasing in the United Kingdom. Over half of British adults are now overweight, and half of these people will probably become obese. The estimated cost of obesity is £0.5bn (€0.7bn; $0.9bn) each year to the NHS and £2bn each year to the wider economy.

Most adults in the United States diet at some time, and trends in the UK are similar. Long term success rates tend to be poor, with 50% of weight loss being regained within one year.

With a market estimated to be worth £11.2bn by 2007, it is not surprising that the commercial sector has shown a keen interest in weight loss programmes. Weight Watchers, the market leader, claims to have one million members (P Hunt, personal communication, 2005). Self help books that provide weight loss strategies are often best sellers—Dr Atkins’ New Diet Revolution has sold more than 10 million copies. Although commercial diets provide consumers with a plethora of choice, data on their comparative efficacy are limited.

Our study compared four popular commercial weight loss programmes with a control group. The diets—representative of the main approaches to weight management in the UK today—were the Slim-Fast plan (a meal replacement approach), Weight Watchers pure points programme (an energy controlled diet with weekly group meetings), Dr Atkins’ new diet revolution (a self monitored low carbohydrate eating plan), and Rosemary Conley’s eat yourself slim diet and fitness plan (a low fat diet and a weekly group exercise class). We report the changes in weight and body fat over the six month study and describe dieting behaviour and weight change in the participants at 12 months.

Methods

The trial was an unblinded randomised controlled parallel dietary intervention study with a delayed treatment control group conducted at five regional centres (Surrey University, Bristol University, Nottingham University, Ulster (Coleraine) University, and Queen Margaret University College, Edinburgh).

Recruitment strategy

We identified potential participants via a BBC advertising campaign (television and other forms of media). Participants were chosen from people who lived within 30 miles of a test centre, were aged between 18 and 65, and had a self reported body mass index between 27 and 40. Volunteers who fulfilled these preliminary inclusion criteria contacted their general practitioner for confirmation that they were eligible. Exclusion criteria were coronary heart disease; type 1 or type 2 diabetes; renal, liver, or respiratory failure; gout; obesity with known cause (Cushing’s disease, hyperthyroidism); previous gastric or weight loss surgery; clinical depression; eating disorders; drug or alcohol misuse; any malabsorptive state (including lactose intolerance); taking lipid lowering or anti-hypertensive drugs; taking any drugs (including orlistat and sibutramine) for weight loss; being treated for cancer; and being pregnant or breastfeeding. Participants gave full informed consent. Three hundred people returned the necessary documentation to enter baseline testing by the start date of the study (July 2002).

Protocol assignment

We estimated that 60 initial participants (44 completers) were needed per treatment group (allowing for a 25% dropout rate) for an 80% chance of identifying a true difference of 4 kg of body weight loss (3 kg body fat), with a significance level of 5%. Thus, each of the five test centres aimed to recruit 60 participants (12 for each diet group; total sample size of 300). Participants took all baseline tests before randomisation and each centre started the
study within six weeks of the start date. Seven participants were subsequently excluded (fig 1). At each test centre, we stratified participants by sex and allocated them to a group using random number generation. Body mass index and age did not differ between participants by sex and allocated them to a group using randomisation. Body mass index and age did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight measurement recorded weight in light clothing, blood pressure, and fasting blood and body fat by whole body dual x-ray absorptiometry. We excluded the absorptiometry data of four participants from all analyses because of errors at baseline. Monthly test centre measurements recorded weight in light clothing, blood pressure, and fasting blood. We monitored renal function in the Atkins group by urea, electrolytes, and cystatin C, and these measures remained within the analysis of covariance. In the intention to treat analysis, we used ANOVA to examine differences between groups; where ANOVA indicated a significant group effect, we performed post hoc pairwise testing with Tukey’s HSD [honestly significantly different] test. Before parametric testing, we assessed homogeneity of variance with Levene’s statistic and tested for normal distribution; we used Welch’s F statistic if variance of the dependent variable was not equal across groups. We analysed differences between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together. Baseline weight correlated with total weight loss in participants who completed. Attrition rates did not differ between centres, so we analysed data from all participants together.
Results

Table 1 shows the baseline demographics and anthropometric measures. The mean time spent on the diet was 24.3 (SD 1.56) weeks and did not differ between diet groups ($F = 2.0, P = 0.12$).

Weight and fat loss

Monthly weight loss by using all available data (fig 2) was high initially but then slowed. Mean weight loss was significantly higher in the Atkins group than in the other diet groups during the first four weeks ($F = 6.9, df = 3, P < 0.001$): Atkins 4.4 kg (SD 2.45, range 13.5 to −0.3 kg), Weight Watchers 2.86 kg (2.23, 12.9 to −0.9 kg), Slim-Fast 2.68 kg (2.33, 9.4 to −1.8 kg), and Rosemary Conley 3.17 kg (2.02, 8.1 to −2.0 kg). At other time points, mean weight loss did not vary significantly between the diet groups (table 2).

Loss of body fat showed similar patterns (table 2). In the first two months, the greatest loss of body fat was seen in the Atkins group; this loss was not significantly different from that seen in the Weight Watchers or Rosemary Conley groups, but it was significantly greater than that seen in the Slim-Fast group. Fat loss was significantly greater in all four diet groups than in the control group. Between two and six months, fat loss (kg and percentage) slowed down, and the diets groups did not differ significantly. Between baseline and six months fat loss did not differ between diet groups, but fat loss in all diet groups was significantly greater than in the control group. All diets resulted in a reduction in waist circumference. Waist reduction (at six months) was highly correlated with total weight loss ($r = 0.81, P < 0.001$) and moderately correlated with percentage of body fat lost ($r = 0.64, P < 0.001$).

Table 1 Mean baseline characteristics of participants in the BBC diet trials allocated to different diet regimens. Values are mean (SD)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Atkins diet (n=57)</th>
<th>Weight Watchers (n=58)</th>
<th>Slim-Fast (n=59)</th>
<th>Rosemary Conley (n=58)</th>
<th>Controls (n=61)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>40.9 (9.7)</td>
<td>39.9 (10.9)</td>
<td>38.9 (10.7)</td>
<td>40.6 (10.3)</td>
<td>40.8 (9.6)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>90.3 (12.7)</td>
<td>88.8 (13.3)</td>
<td>90.1 (14.1)</td>
<td>89.8 (12.9)</td>
<td>87.9 (13.5)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>31.9 (2.2)</td>
<td>31.4 (2.4)</td>
<td>32.2 (3.0)</td>
<td>31.6 (2.6)</td>
<td>31.5 (2.3)</td>
</tr>
<tr>
<td>Body fat (kg)*</td>
<td>35.7 (8.9)</td>
<td>34.2 (6.9)</td>
<td>35.6 (8.5)</td>
<td>34.5 (7.6)</td>
<td>33.4 (6.5)</td>
</tr>
<tr>
<td>Body fat (%)</td>
<td>40.9 (8.6)</td>
<td>39.7 (7.1)</td>
<td>40.6 (8.5)</td>
<td>39.6 (7.7)</td>
<td>39.4 (8.8)</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>102 (10.6)</td>
<td>100 (10.3)</td>
<td>101 (11.5)</td>
<td>100 (8.8)</td>
<td>100 (10.1)</td>
</tr>
<tr>
<td>Blood pressure (mm Hg):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>135 (15.1)</td>
<td>127 (15.1)</td>
<td>129 (17)</td>
<td>130 (14.8)</td>
<td>130 (16.1)</td>
</tr>
<tr>
<td>Diastolic</td>
<td>83 (10.7)</td>
<td>80 (10.7)</td>
<td>81 (11.5)</td>
<td>82 (10.3)</td>
<td>81 (9.6)</td>
</tr>
<tr>
<td>Glucose (mmol/l)†</td>
<td>5.47 (0.5)</td>
<td>5.46 (0.5)</td>
<td>5.53 (0.8)</td>
<td>5.6 (0.8)</td>
<td>5.48 (0.5)</td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)††</td>
<td>5.77 (0.9)</td>
<td>5.58 (1.1)</td>
<td>5.47 (1.1)</td>
<td>5.63 (0.95)</td>
<td>5.80 (1.1)</td>
</tr>
</tbody>
</table>

*Not measured in all participants: 57 for Weight Watchers, 56 for Rosemary Conley, 60 for controls.
†Not measured in all participants: 56 for Atkins diet, 57 for Rosemary Conley, 59 for controls.

Table 2 Intention to treat analysis of main outcome indicators in participants in the BBC diet trials allocated to different diet regimens

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Atkins diet (n=57)</th>
<th>Weight Watchers (n=58)</th>
<th>Slim-Fast (n=59)</th>
<th>Rosemary Conley (n=58)</th>
<th>Controls (n=61)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight loss (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2 months</td>
<td>5.2 (4.4)</td>
<td>4.7 (3.2)</td>
<td>3.7 (3.5)</td>
<td>4.0 (3.3)</td>
<td>0.4 (1.8)</td>
</tr>
<tr>
<td>2-6 months</td>
<td>1.3 (3.1)</td>
<td>2.2 (3.0)</td>
<td>1.4 (2.8)</td>
<td>2.4 (3.4)</td>
<td>−0.9 (1.6)</td>
</tr>
<tr>
<td>0-6 months</td>
<td>6.0 (6.4)</td>
<td>6.6 (5.6)</td>
<td>4.8 (5.6)</td>
<td>6.3 (6.1)</td>
<td>−0.6 (2.2)</td>
</tr>
<tr>
<td>Weight loss (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2 months</td>
<td>5.5 (4.2)</td>
<td>5.1 (3.5)</td>
<td>3.8 (3.4)</td>
<td>4.5 (3.6)</td>
<td>0.4 (2.2)</td>
</tr>
<tr>
<td>2-6 months</td>
<td>1.3 (3.1)</td>
<td>2.4 (3.4)</td>
<td>1.3 (2.9)</td>
<td>2.7 (3.7)</td>
<td>−1.2 (1.9)</td>
</tr>
<tr>
<td>0-6 months</td>
<td>6.2 (6.2)</td>
<td>7.3 (6.1)</td>
<td>4.9 (5.5)</td>
<td>7.0 (6.8)</td>
<td>−0.6 (2.7)</td>
</tr>
<tr>
<td>Fat loss (kg)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2 months</td>
<td>3.5† (3.0)</td>
<td>3.1 (2.4)</td>
<td>2.3† (2.3)</td>
<td>2.5 (2.1)</td>
<td>0.2 (1.3)</td>
</tr>
<tr>
<td>2-6 months</td>
<td>1.2 (2.3)</td>
<td>2.0 (2.3)</td>
<td>1.2 (2.6)</td>
<td>2.1 (2.5)</td>
<td>−0.5 (1.2)</td>
</tr>
<tr>
<td>0-6 months</td>
<td>4.6 (4.8)</td>
<td>5.0 (4.3)</td>
<td>3.4 (4.3)</td>
<td>4.5 (4.3)</td>
<td>−0.3 (4.4)</td>
</tr>
<tr>
<td>Fat loss (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2 months</td>
<td>1.9† (1.9)</td>
<td>1.6 (1.8)</td>
<td>1.0† (1.4)</td>
<td>1.5 (1.5)</td>
<td>0.1 (1.4)</td>
</tr>
<tr>
<td>2-6 months</td>
<td>1.3 (1.9)</td>
<td>2.0 (2.0)</td>
<td>1.2 (2.4)</td>
<td>2.1 (2.4)</td>
<td>−0.6 (1.0)</td>
</tr>
<tr>
<td>0-6 months</td>
<td>3.1 (3.3)</td>
<td>3.6 (3.3)</td>
<td>2.1 (2.9)</td>
<td>3.4 (3.5)</td>
<td>0.1 (1.6)</td>
</tr>
<tr>
<td>Reduction in waist circumference (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2 months</td>
<td>6.7 (6.1)</td>
<td>5.5 (5.1)</td>
<td>4.8 (4.6)</td>
<td>4.5 (5.3)</td>
<td>1.0 (4.6)</td>
</tr>
<tr>
<td>2-6 months</td>
<td>2.4 (4.0)</td>
<td>3.0 (3.5)</td>
<td>2.1 (3.4)</td>
<td>3.0 (4.2)</td>
<td>−0.3 (2.4)</td>
</tr>
<tr>
<td>0-6 months</td>
<td>8.1 (7.4)</td>
<td>8.3 (7.0)</td>
<td>6.4 (6.3)</td>
<td>7.2 (7.2)</td>
<td>0.8 (3.8)</td>
</tr>
</tbody>
</table>

For all variables reported, the control group was significantly different from all other groups ($P<0.001$).
†Pairwise comparison of group means with post hoc Tukey’s HSD (honestly significantly different) test found a significant difference between the Atkins and Slim-Fast groups.
Cardiac risk factors

We found few significant differences in cardiac risk factors between the diet groups and the control group (table 3). Initially, the fall in systolic pressure in the Atkins group was significantly greater than in the Slim-Fast group but not the other groups, probably because of the relatively greater initial weight loss in the Atkins group. Regression analysis showed that total weight loss over time had the greatest influence on systolic and diastolic pressure (adjusted R^2 0.61 for change in systolic pressure and 0.79 for change in diastolic pressure).

Glucose concentrations fell slightly over time; only in the Weight Watchers group was fasting glucose significantly lower than in the control group. In the first two months, a significant drop in total cholesterol was seen in all diet groups except for the Atkins group. By six months, cholesterol had fallen significantly more than in the Slim-Fast group but not the other groups. However, compliance with the diets varied between the groups, with 36% for the Weight Watchers group, 21% for the Atkins group, 55% for the Rosemary Conley group, and 86% for the Slim-Fast group. These losses were achieved despite the random allocation of diets.

Compliance with the diets

Reported attendance at slimming clubs was similar at two months (Rosemary Conley 79%, Weight Watchers 60%) and six months (47%, 47%). Slim-Fast recommends 14 meal replacements each week; participants reported 10 each week at two months and eight at six months. With the Atkins diet, reported portions of carbohydrate foods fell from 40 each day at baseline to five at two months and seven at six months.

Withdrawal

Eighty three (28%) participants had withdrawn by six months (table 4); 53 (64% of the total number) had withdrawn by week 8, and at this time only seven (8%) participants who withdrew had lost more than 5% of their body weight compared with 53 (25%) who completed the trial. Older participants were significantly more likely to complete than younger ones (mean age 41.6 (9.9) v 36.8 (10.4); t = −3.7, P < 0.001; 95% confidence interval 2.3 to 7.4). No differences in diet, centre, or sex were found between participants who completed or withdrew. Withdrawal in the control group (21%; 35%) was mostly because participants did not wish to delay dieting.

Follow-up at 12 months

At 12 months, 158 participants (54% of the original sample) returned data; 29 had originally been allocated to the Atkins diet, 33 to Weight Watchers, 35 to Slim-Fast, 35 to Rosemary Conley, and at this time only seven (8%) participants who withdrew had lost more than 5% of their body weight compared with 53 (25%) who completed the trial. Older participants were significantly more likely to complete than younger ones (mean age 41.6 (9.9) v 36.8 (10.4); t = −3.7, P < 0.001; 95% confidence interval 2.3 to 7.4). No differences in diet, centre, or sex were found between participants who completed or withdrew. Withdrawal in the control group (21%; 35%) was mostly because participants did not wish to delay dieting.
and 28 to the control group. Dieting behaviour had changed considerably; only 58 (45%) were still keeping to their originally allocated diets (nine to Atkins, 20 to Weight Watchers, nine to Slim-Fast, 20 to Rosemary Conley). Twenty five (19%) had swapped dietary programmes and 47 (36%) were following their own diet or exercise plan. More participants in the unsupported programmes (Atkins diet and Slim-Fast) withdrew than in the supported programmes (χ² = 8.34, df = 3.0, P = 0.04). Participants in the control group who had switched to dieting (mean weight loss 6.37, SD 4.5 kg) also preferred group based approaches because just over half chose Weight Watchers.

Because so many participants changed diets (25% of men and 20% of women), we also analysed weight loss in participants who had maintained the diet to which they were initially allocated (table 5). Statistical analysis is limited by sample size but indicates that weight rebound after the initial six months was higher in the unsupported programmes; however, all diets resulted in a clinically useful weight loss of around 10% after 12 months in participants who had persisted with the diet allocated.

Discussion

Clinically beneficial weight loss is possible through commercially available strategies, and reduced blood pressure and waist circumference accompany weight loss. The four different approaches were equally effective after six months. Reductions in weight and body fat were seen with the Atkins diet within the first eight weeks of dieting, so that the large weight changes seen with low carbohydrate diets are not caused by loss of body water alone. The Atkins diet had no detrimental effects on total cholesterol concentrations or renal function, although the overall safety of the diet was not tested.\(^\text{11}\)

The range of absolute weight loss in participants who completed the study was wide. Importantly, we did not try to standardise energy intake across the groups, so that the effects reflect the participants’ interpretation of and compliance with the diet allocated. However, the mean absolute weight loss of around 8 kg is comparable to other studies.\(^\text{12}\) Compliance with each diet varied greatly. Weight can be lost only by a sustained negative balance of energy, so the degree of adherence to a diet will predict success or failure if activity levels remain constant. More information is needed to enable health professionals to decide which dietary approach may suit their patients. Currently, we cannot predict the dietary approach best suited to each person to lose weight and maintain weight loss in the longer term, but it is clear that “one size does not fit all.”

Our study was used to make the BBC series on diet trials, which featured a small number of people. Since motivation to meet goal weights and patients’ expectations of weight loss are key determinants of success,\(^\text{13}\) participants may have been influenced by the media interest. Overall, around 5% of participants were featured in the television programmes, and most participants knew that they would not be filmed within the first few weeks. Excluding data from the 15 filmed participants had no effect on the overall statistical outcomes shown in this study. The withdrawal rate was comparable to other longitudinal studies of weight loss.\(^\text{14–17}\)

No dietary differences were apparent at six months, but behaviour from six to 12 months points towards an advantage of programmes based on group support. The need for a “quick fix” and the relative lack of interest that people show in achieving modest weight loss contribute to lack of adherence to most diets in the long term. People who had kept to their allocated diet lost about 10% of their weight, despite some weight rebound, but some regression to the mean effect was seen. These results provide information on the “best effect” that the most highly motivated subjects may hope to achieve over one year.

In conclusion, commercial weight loss programmes can help people with uncomplicated obesity. Our study provides data on how much weight patients can expect to lose by dieting, and these data could help practitioners in managing patients’ sometimes unrealistic expectations of weight loss targets. The benefits to health of modest weight loss and maintaining that loss over long periods need to be emphasised.

Contributors

HT was the principal investigator and is guarantor. She contributed to the study design, data analysis, interpretation, drafting, and writing of the paper. DJM and LMM contributed to the study design, data analysis, interpretation, drafting, and writing of the paper. KRF contributed to the study design, interpretation, reporting, and critical review of the paper. SB contributed to study execution, data collection, and critical review of the paper. IAM, MAT, MBEI, CML, and AdeL contributed to the study planning, interpretation, reporting, and critical review of the paper. Thanks to David Lovell for statistical advice; Manana Stanley, Rebecca Hiscutt, and Anne Herriot for planning, study execution, and data collection; Monique Raats and Richard Shepherd for study planning; Kathryn Hart, Rachel Bar-

Table 4 Reasons for withdrawal from the diet

<table>
<thead>
<tr>
<th>Group</th>
<th>Dissatisfied with randomisation</th>
<th>Could not tolerate diet</th>
<th>Dissatisfied with weight loss</th>
<th>Non-compliant or lost to follow-up</th>
<th>Socioeconomic</th>
<th>Pregnancy</th>
<th>Total (% of initial cohort)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atkins diet</td>
<td>M 2 F 6</td>
<td>M 0 F 0</td>
<td>M 0 F 2</td>
<td>M 1 F 5</td>
<td>M 0 F 2</td>
<td>M 0 F 2</td>
<td>0 (13) 2 (36)</td>
</tr>
<tr>
<td>Weight Watchers</td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
<td>0 (13) 9 (21)</td>
</tr>
<tr>
<td>Slim-Fast</td>
<td>0 0</td>
<td>0 3</td>
<td>0 4</td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
<td>5 (29) 12 (29)</td>
</tr>
<tr>
<td>Rosemary Conley</td>
<td>2 1</td>
<td>1 2</td>
<td>1 3</td>
<td>2 4</td>
<td>0 1</td>
<td>1</td>
<td>6 (40) 11 (26)</td>
</tr>
<tr>
<td>Controls</td>
<td>2 1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5 (33) 16 (35)</td>
</tr>
<tr>
<td>Total</td>
<td>4 16</td>
<td>2 15</td>
<td>1 6</td>
<td>9 11</td>
<td>4 14</td>
<td>1</td>
<td>20 (25) 63 (29)</td>
</tr>
</tbody>
</table>

M=male, F=female.

Table 5 Mean (SD) weight loss for participants in the BBC diet trials who completed 12 months on the diet to which they were randomly allocated

<table>
<thead>
<tr>
<th>Weight loss</th>
<th>Atkins diet (n=9)</th>
<th>Weight watchers (n=20)</th>
<th>Slim-Fast (n=9)</th>
<th>Rosemary Conley (n=20)</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–12 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute weight loss (kg)</td>
<td>9.0 (4.1)</td>
<td>9.1 (6.2)</td>
<td>10.7 (6.2)</td>
<td>10.9 (4.1)</td>
<td>0.61</td>
</tr>
<tr>
<td>Weight loss (% of initial body weight)</td>
<td>10.3 (4.7)</td>
<td>10.3 (6.0)</td>
<td>11.4 (5.9)</td>
<td>13.1 (4.9)</td>
<td>0.38</td>
</tr>
<tr>
<td>6–12 months:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute weight loss (kg)</td>
<td>-1.5 (3.3)</td>
<td>0.45 (3.6)</td>
<td>-1.85 (3.1)</td>
<td>1.2 (3.5)</td>
<td>0.11</td>
</tr>
</tbody>
</table>

*Comparison of active diets.
4 French SA, Jefferies RW, Murray D. Is dieting good for you? Prevalence, duration and
associative weight and behaviour changes for specific weight loss strategies over four
5 Offer A. Body weight and self control in the United States and Britain since the 1950s.

What is already known about this topic
The prevalence of obesity and overweight with its subsequent morbidity is growing in the UK
Commercial diets are an increasingly popular option for weight management

What this study adds
The comparative efficacy of four commercial diets was similar
The health benefits associated with a modest loss of weight (5-10% body weight) can be gained by people following a range of dietary regimen for six months with little support from health professionals

6 Serdula MK, Mokdad AH, Williamson DF, Gahalia DA, Mendelin JM, Heath GW. Prevalence
7 Perri MG. The maintenance of treatment effects in the long term management of
12 Harvey-Birnir J. The efficacy of dietary fat vs total energy restriction for weight loss. Obes Res
13 Karvetti RL, Haika PA. A seven year follow up of a weight reduction programme in Finnish
14 Foster GI, Wadden TA, Vogt RA, Brewer G. What is a reasonable weight loss? Patients'
expectations and evaluations of obesity treatment outcomes. J Consult Clin Psychol
1997;65:79-85.
15 Lean M, Han T, Pryn T, Richmond PR, Arevell A. Weight loss with high and low carb-
carbohydrate versus conventional weight loss diets in severely obese adults: one year
17 Foster GD, Wyatt HR, Hill JO, McCuein BG, Brill G, Mohammed RS, et al. A
2003;348:2082-90.
(Accepted 24 March 2006)
doi 10.1136/bmj.38833.411204.80

School of Biomedical and Molecular Sciences, Centre for Nutrition, Dietetics and
Food, University of Surrey, Guildford GU2 7XH
Helen Truby: senior lecturer in nutrition and dietetics

Linda M Morgan: professor of nutritional endocrinology
D Joe Millward: professor of human nutrition

Department of Exercise and Health Sciences, Centre for Sport, Exercise and
Health Sciences, University of Bristol, Bristol BS8 1TP
Sue Baic: lecturer in nutrition
Kenneth R Fox: professor of exercise science

Faculty of Health and Social Work, University of Plymouth, Plymouth PL4 8AA
Anne deLooy: professor of dietetics

Northern Ireland Centre for Food and Health, University of Ulster, Coleraine,
BT52 1SA
M Barbara E Livingstone: professor of nutrition
Catherine M Logan: PhD student

Centre for Integrated Systems Biology and Medicine, Institute of Clinical Research
and School of Biomedical Sciences, University of Nottingham Medical School,
Queen’s Medical Centre, Nottingham NG7 2UH

Ian A Macdonald: professor
Moira A Taylor: lecturer in nutrition and dietetics

Correspondence to: H Truby hztruby@surrey.ac.uk
that trial were based on expert opinion whereas we collected our data. The previous model also disregarded that pressure ulcers are rarely the reason for people being admitted to hospital. Thus the marginal cost of treating a pressure ulcer in hospital may be small compared with the overall costs of hospital treatment. In this sense our analysis reflects actual practice. Our assumption that participants remained on the allocated surface over their entire hospital stay is conservative; in reality patients are moved on to standard mattresses or higher specification surfaces if their risk of pressure ulcers changes. Given participants in the overlay group developed pressure ulcers earlier than those on the mattresses, this assumption will have over-estimated the cost of the mattresses, thus strengthening our conclusions.

Although there was considerable uncertainty around the point estimates of mean health benefits and costs (table 2), this should not result in large uncertainty for decision makers since even for large willingness to pay values (see bmj.com) the probability of the overlaps being cost effective is only between 10% and 20%.11

We thank the clinical research nurses Helen Barrow, Caroline Cooper, Fiona Corcoran, Patricia Hutchinson, Yvonne Meades, Dawn Parkes, Fiona Smith, Ann Fotheringham, Sarah Gowland, Ann Warriner, Caroline Smith, Richard Buckland, Monica Clark, Morag Doherty, Andrew Young, and Helen Marson; the participants and their relatives; ward nursing and medical staff of the six participating NHS trusts; and the independent trial steering committee: Jenny Hewison (chair), David Machin, and Gerben ter Riet.

Contributors: See bmj.com.

Funding: UK Department of Health through its Health Technology Assessment Programme. The opinions and conclusions expressed here are those of the authors and do not necessarily reflect those of the UK NHS or the Department of Health. Competing interests: JN has been reimbursed for attending conferences, has been paid speakers’ fees, and received research funding from Huntleigh Healthcare.

Ethical approval: This study was approved by the North West multicentre research ethics committee and local ethics committees.

Corrections and clarifications

An international standard for disclosure of clinical trial information

A couple of errors cropped up in this editorial by Fiona Godlee (BMJ 2006;332:1107-8, 13 May). In discussing the setting up of trial registries, Fiona mentioned the metaRegister of Clinical Trials, but this should have been the ISRCTN Register (http://isrctn.org) since this is where trials are uniquely registered in accordance with international requirements. In addition, the meeting convened by WHO to determine what information must be disclosed at registration was in April 2005 (not 2004 as meeting convened by WHO to determine what information must be disclosed at registration was in April 2005 (not 2004 as written).

Short cuts: Two antiplatelet agents work better than one after stroke

In the final item of these Short Cuts by Alison Tonks (BMJ 2006;332:1264-5, 27 May), the number needed to treat for a combination of aspirin and dipyridamole should have been 33. The value of 104 that we gave (and which is given in the Lancet paper cited) refers to the number needed to treat per year.

Effect of patient completed agenda forms and doctors' education about the agenda on the outcome of consultations: randomised controlled trial

We inadvertently used the wrong terminology in one of the figures of this research article by J F Middleton and colleagues (BMJ 2006;332:1238-41, 27 May). The cluster of boxes in figure 2 of the full version on bmj.com that state "data not available" should have read "did not attend appointment." In addition, a column heading in table 2 of the full version (the table of the print version) is incorrect: the heading spanning the last three columns should read "Change in means (95% CI) (intervention group-reference group)" (not "reference group-intervention group").

Randomised controlled trial of four commercial weight loss programmes in the UK: initial findings from the BBC "diet trial"

During the writing, rewriting, and editing of this research paper by Helen Truby and colleagues (BMJ 2006;332:1309-11, 3 June), some small errors crept into table 3 of the full version on bmj.com (table 2 of the print version). In the control group the mean (SD) fall in total cholesterol during 2-6 months should be 0.24 (0.6) (not 0.5 (0.18) as written) and during 0-6 months should be 0.18 (0.5) (not 0.5 (0.18)). The table footnote should have stated that the fall in total cholesterol at 2 months in the Weight Watchers, Rosemary Conley, and Slim-Fast groups was 0.18 (0.5) (not 0.5 (0.18)). The table footnote should have stated that the fall in total cholesterol at 2 months in the Weight Watchers, Rosemary Conley, and Slim-Fast groups was 0.18 (0.5) (not 0.5 (0.18)).