Airway sizes and proportions in children quantified by a video-bronchoscopic technique

Masters, Ian B., Ware, Robert S., Zimmerman, Paul V., Lovell, Brian, Wootton, Richard, Francis, Paul V. and Chang, Anne B. (2006) Airway sizes and proportions in children quantified by a video-bronchoscopic technique. BMC Pulmonary Medicine, 6 5: 1-8. doi:10.1186/1471-2466-6-5

Attached Files (Some files may be inaccessible until you login with your UQ eSpace credentials)
Name Description MIMEType Size Downloads
Airwaysizeportio.pdf Airwaysizeportio.pdf application/pdf 13.57KB 130

Author Masters, Ian B.
Ware, Robert S.
Zimmerman, Paul V.
Lovell, Brian
Wootton, Richard
Francis, Paul V.
Chang, Anne B.
Title Airway sizes and proportions in children quantified by a video-bronchoscopic technique
Journal name BMC Pulmonary Medicine   Check publisher's open access policy
ISSN 1471-2466
Publication date 2006-01-01
Sub-type Article (original research)
DOI 10.1186/1471-2466-6-5
Open Access Status DOI
Volume 6
Issue 5
Start page 1
End page 8
Total pages 8
Editor D. Saltman
Place of publication U.K.
Publisher BioMed Central
Collection year 2006
Language eng
Subject 321019 Paediatrics
280208 Computer Vision
321027 Respiratory Diseases
730110 Respiratory system and diseases (incl. asthma)
Abstract Background: A quantitative understanding of airway sizes and proportions and a reference point for comparisons are important to a bronchoscopist. The aims of this study were to measure large airway areas, and define proportions and predictors of airway size in children. Methods: A validated videobronchoscope technique was used to measure in-vivo airway cross-sectional areas (cricoid, right (RMS) and left (LMS) main stem and major lobar bronchi) of 125 children. Airway proportions were calculated as ratios of airways to cricoid areas and to endotracheal tube (ETT) areas. Mann Whitney U, T-tests, and one-way ANOVA were used for comparisons and standard univariate and backwards, stepwise multivariate regression analyses were used to define airway size predictors. Results: Airways size increased progressively with increasing age but proportions remained constant. The LMS was 21% smaller than the RMS. Gender differences in airways' size were not significant in any age group or airway site. Cricoid area related best to body length (BL): cricoid area (mm2) = 26.782 + 0.254*BL (cm) while the RMS and LMS area related best to weight: RMS area (mm2) = 23.938 + 0.394*Wt (kg) and LMS area (mm2) = 20.055 + 0.263*Wt (kg) respectively. Airways to cricoid ratios were larger than airway to ETT ratios (p=0.0001). Conclusions: The cricoid and large airways progressively increase in size but maintain constant proportional relationships to the cricoid across childhood. The cricoid area correlates with body length while the RMS and LMS are best predicted by weight. These data provide for quantitative comparisons of airway lesions.
Keyword Iris-research
References 1. Masters, I. B., A. B. Chang, L. Patterson, C. Wainwright, H. Buntain, B. W. Dean, and P. W. Francis. Series of laryngomalacia, tracheomalacia, and bronchomalacia disorders and their associations with other conditions in children. Pediatr Pulmonol. 2002; 34: 189-95. 2. Rozycki, H. J., M. L. Van Houten, and G. R. Elliott. Quantitative assessment of intrathoracic airway collapse in infants and children with tracheobronchomalacia. Pediatr Pulmonol. 1996; 21: 241-5. 3. Okazaki, J., S. Isono, H. Hasegawa, M. Sakai, Y. Nagase, and T. Nishino. Quantitative assessment of tracheal collapsibility in infants with tracheomalacia. Am J Respir Crit Care Med. 2004; 170: 780-5. 4. Masters, I. B., M. Eastburn, P. W. Francis, R. Wootton, P. V. Zimmerman, R. S. Ware, and A. B. Chang. Quantification of the magnification and distortion effects of a pediatric flexible video-bronchoscope. Respir Res. 2005; 6: 16. 5. Masters, I. B., M. M. Eastburn, R. Wootton, R. S. Ware, P. W. Francis, P. V. Zimmerman, and A. B. Chang. A New Method for Objective Identification and Measurement of Airway Lumen in Pediatric Flexible Video-Bronchoscopy. Thorax. 2005; 60: 652-658. 6. Eckel, H. E., J. Koebke, C. Sittel, G. M. Sprinzl, C. Pototschnig, and E. Stennert. Morphology of the human larynx during the first five years of life studied on whole organ serial sections. Ann Otol Rhinol Laryngol. 1999; 108: 232-8. 7. Jesseph, J. E., and K. A. Merendino. The dimensional interrelationships of the major components of the human tracheobronchial tree. Surg Gynecol Obstet. 1957; 105: 210-4. 8. Weibel, E. Morphometrics of the lung. In W. Fenn, editor. Handbook of Physiology Section 3:Respiration,Volume 1, Handbook of Physiology. Washington: The Williams and Wilkins Company,Baltimore,Maryland; 1964. p 285-307. 9. Butz, R. O., Jr. Length and cross-section growth patterns in the human trachea. Pediatrics. 1968; 42: 336-41. 10. Thurlbeck, W. M. Postnatal growth and development of the lung. Am Rev Respir Dis. 1975; 111: 803-44. 11. Thurlbeck, W. M., and J. R. Haines. Bronchial dimensions and stature. Am Rev Respir Dis. 1975; 112: 142-5. 12. Wailoo, M. P., and J. L. Emery. Normal growth and development of the trachea. Thorax. 1982; 37: 584-7. 13. Mansell, A. L., A. C. Bryan, and H. Levison. Relationship of lung recoil to lung volume and maximum expiratory flow in normal children. J Appl Physiol. 1977; 42: 817-23. 14. Taussig, L. M., K. Cota, and W. Kaltenborn. Different mechanical properties of the lung in boys and girls. Am Rev Respir Dis. 1981; 123: 640-3. 15. Hibbert, M. E., J. M. Couriel, and L. I. Landau. Changes in lung, airway, and chest wall function in boys and girls between 8 and 12 yr. J Appl Physiol. 1984; 57: 304-8. 16. Hibbert, M. E., I. L. Hudson, A. Lanigan, L. I. Landau, and P. D. Phelan. Tracking of lung function in healthy children and adolescents. Pediatr Pulmonol. 1990; 8: 172-7. 17. Hibbert, M., A. Lannigan, J. Raven, L. Landau, and P. Phelan. Gender differences in lung growth. Pediatr Pulmonol. 1995; 19: 129-34. 18. Hoo, A. F., C. Dezateux, J. P. Hanrahan, T. J. Cole, R. S. Tepper, and J. Stocks. Sex-specific prediction equations for Vmax(FRC) in infancy: a multicenter collaborative study. Am J Respir Crit Care Med. 2002; 165: 1084-92. 19. King, G. G., N. J. Brown, C. Diba, C. W. Thorpe, P. Munoz, G. B. Marks, B. Toelle, K. Ng, N. Berend, and C. M. Salome. The effects of body weight on airway calibre. Eur Respir J. 2005; 25: 896-901. 20. Litman, R. S., E. E. Weissend, D. Shibata, and P. L. Westesson. Developmental changes of laryngeal dimensions in unparalyzed, sedated children. Anesthesiology. 2003; 98: 41-5. 21. Masters, I. B., and P. Cooper. Paediatric flexible bronchoscopy. J Paediatr Child Health. 2002; 38: 555-9. 22. Chang, A. B., G. E. Moloney, P. J. Harms, and I. Brent Masters. Endoscopic intratracheal carbon dioxide measurements during pediatric flexible bronchoscopy. Paediatr Anaesth. 2004; 14: 650-5. 23. Cole, F. Pediatric formulas for the anesthesiologist. AMA J Dis Child. 1957; 94: 672-3. 24. Weibel, E. Airways and blood Vessels. In: The Pathway For Oxygen Structure and Function in the Mammalian Respiratory System. Cambridge: Harvard University Press; 1984. p 272-301. 25. Brodsky, J., K. Malott, M. Angst, B. Fitzmaurice, S. Kee, and L. Logan. The relationship between Tracheal Width and Left Bronchial Width:Implications for Left-Sided Double Lumen Tube Selection. J Cardiothorac Vasc Anesth. 2001; 15: 216-217. 26. Brodsky, J. B., and H. J. Lemmens. Left double-lumen tubes: clinical experience with 1,170 patients. J Cardiothorac Vasc Anesth. 2003; 17: 289-98. 27. Stein, R. T., C. J. Holberg, D. Sherrill, A. L. Wright, W. J. Morgan, L. Taussig, and F. D. Martinez. Influence of parental smoking on respiratory symptoms during the first decade of life: the Tucson Children's Respiratory Study. Am J Epidemiol. 1999; 149: 1030-7. 28. Wright, A. L., C. Holberg, F. D. Martinez, and L. M. Taussig. Relationship of parental smoking to wheezing and nonwheezing lower respiratory tract illnesses in infancy. Group Health Medical Associates. J Pediatr. 1991; 118: 207-14. 29. Leeder, S. R., A. V. Swan, J. K. Peat, A. J. Woolcook, and C. R. Blackburn. Maximum expiratory flow-volume curves in children: changes with growth and individual variability. Bull Eur Physiopathol Respir. 1977; 13: 249-60. 30. Masters, I. B., J. Seidenberg, I. Hudson, P. D. Phelan, and A. Olinsky. Longitudinal study of lung mechanics in normal infants. Pediatr Pulmonol. 1987; 3: 3-7. 31. Miettinen, P. J., D. Warburton, D. Bu, J. S. Zhao, J. E. Berger, P. Minoo, T. Koivisto, L. Allen, L. Dobbs, Z. Werb, and R. Derynck. Impaired lung branching morphogenesis in the absence of functional EGF receptor. Dev Biol. 1997; 186: 224-36. 32. Warburton, D., M. Schwarz, D. Tefft, G. Flores-Delgado, K. D. Anderson, and W. V. Cardoso. The molecular basis of lung morphogenesis. Mech Dev. 2000; 92: 55-81. 33. Hu, M. C., and N. D. Rosenblum. Genetic regulation of branching morphogenesis: lessons learned from loss-of-function phenotypes. Pediatr Res. 2003; 54: 433-8. 34. Cotton, R. Pediatric laryngotracheal stenosis. J Pediatric Surgery. 1984; 19: 699-704. 35. Martinez, F. D., W. J. Morgan, A. L. Wright, C. Holberg, and L. M. Taussig. Initial airway function is a risk factor for recurrent wheezing respiratory illnesses during the first three years of life. Group Health Medical Associates. Am Rev Respir Dis. 1991; 143: 312-6. 36. Martinez, F. D., A. L. Wright, C. J. Holberg, W. J. Morgan, and L. M. Taussig. Maternal age as a risk factor for wheezing lower respiratory illnesses in the first year of life. Am J Epidemiol. 1992; 136: 1258-68. 37. Martinez, F. D., A. L. Wright, L. M. Taussig, C. J. Holberg, M. Halonen, and W. J. Morgan. Asthma and wheezing in the first six years of life. The Group Health Medical Associates. N Engl J Med. 1995; 332: 133-8. 38. Brown, R. H., E. A. Zerhouni, and W. Mitzner. Variability in the size of individual airways over the course of one year. Am J Respir Crit Care Med. 1995; 151: 1159-64. 39. Brown, R. H., W. Robbins, P. Staats, and C. Hirshman. Prevention of bronchoconstriction by an orally active local anesthetic. Am J Respir Crit Care Med. 1995; 151: 1239-43. 40. Brown, R. H., and W. Mitzner. Airway closure with high PEEP in vivo. J Appl Physiol. 2000; 89: 956-60. 41. Horn, B., and B. Schunch. Determining Optic Flow. A.I.Memo No.572, Massachusetts Institute of Technology.1980. 1-27. 42. Srinivasan, M., S. Zhang, and N. Bidwell. Visually mediated odometry in honeybees. J Exp Biol. 1997; 200: 2513-22. 43. Srinivasan, M. V., and S. W. Zhang. Visual control of honeybee flight. Exs. 1997; 84: 95-113.
Q-Index Code C1

Version Filter Type
Citation counts: Scopus Citation Count Cited 20 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Mon, 06 Mar 2006, 10:00:00 EST by Brian C. Lovell on behalf of Social Sciences and Humanities Library Service