Measurement of refractive index of single microparticles

Knoener, Gregor, Parkin, Simon, Nieminen, Timo A., Heckenberg, Norman R. and Rubinsztein-Dunlop, Halina (2006) Measurement of refractive index of single microparticles. Physical Review Letters, 97 15: Article number 157402. doi:10.1103/PhysRevLett.97.157402

Attached Files (Some files may be inaccessible until you login with your UQ eSpace credentials)
Name Description MIMEType Size Downloads
UQ7823.pdf Full text (open access) application/pdf 299.05KB 13
preprint.pdf preprint.pdf application/pdf 207.36KB 759

Author Knoener, Gregor
Parkin, Simon
Nieminen, Timo A.
Heckenberg, Norman R.
Rubinsztein-Dunlop, Halina
Title Measurement of refractive index of single microparticles
Journal name Physical Review Letters   Check publisher's open access policy
ISSN 0031-9007
1079-7114
Publication date 2006-10-01
Sub-type Article (original research)
DOI 10.1103/PhysRevLett.97.157402
Open Access Status File (Publisher version)
Volume 97
Issue 15
Start page Article number 157402
Total pages 4
Place of publication College Park, MD, United States
Publisher American Physical Society
Language eng
Subject 240504 Electrostatics and Electrodynamics
240400 Optical Physics
Abstract The refractive index of single microparticles is derived from precise measurement and rigorous modeling of the stiffness of a laser trap. We demonstrate the method for particles of four different materials with diameters from 1.6 to 5.2 microns and achieve an accuracy of better than 1%. The method greatly contributes as a new characterization technique because it works best under conditions (small particle size, polydispersion) where other methods, such as absorption spectroscopy, start to fail. Particles need not be transferred to a particular fluid, which prevents particle degradation or alteration common in index matching techniques. Our results also show that advanced modeling of laser traps accurately reproduces experimental reality.
Keyword Optical tweezers
Mie scattering
References [1] B. G. Sumptera, D. W. Noida, and M. D. Barnes, Polymer 44, 4389 (2003). [2] D. Stramski, Deep-Sea Res. I 46, 335 (1999). [3] V. Backman, et al., Nature 406, 35 (2000). [4] M. Bessis, N. Mohandas, and C. Feo, Blood Cells 6, 315 (1980). [5] T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, J. Quant. Spec. Rad. Transf. 79-80, 1005 (2003). [6] P. C. Waterman, Phys. Rev. D 3, 825 (1971). [7] G. Mie, Annalen der Physik 25, 377 (1908). [8] J. H. Crichton and P. L. Marston, Ele. J. Diff. Equ. Conf. 04, 37 (2000). [9] T. A. Nieminen, N. R. Heckenberg, and H. RubinszteinDunlop, Proc. SPIE 5514, 514 (2004). [10] A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, Proc. R. Soc. Lond. A 459, 3021 (2003). [11] G. Knoener, S. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. E 72, 031507 (2005). [12] W. M. Irvine and J. B. Pollack, Icarus 8, 324 (1968). [13] T. Ishigure, E. Nihei, and Y. Koike, Appl. Opt. 35, 2048 (1996). [14] I. D. Nikolov and C. D. Ivanov, Appl. Opt. 39, 2067 (2000). [15] X. Ma et al., Phys. Med. Biol. 48, 4165 (2003). [16] Melles Griot Optics Guide, http://www.mellesgriot.com/ (2002). [17] C. E. Alupoaei, J. A. Olivares, and L. H. Garcia-Rubio, Biosens. Bioelectron. 19, 893 (2004). [18] A. Ashkin and J. M. Dziedzic, Appl. Opt. 19, 660 (1980). [19] R. M. P. Doornbos et al., Appl. Opt. 35, 729 (1996). [20] Z. Ulanowski, R. S. Greenaway, P. H. Kaye, and I. K. Ludlow, Meas. Sci. Techn ol. 13, 292 (2002).
Q-Index Code C1
Q-Index Status Provisional Code
Institutional Status UQ

 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 30 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 33 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Thu, 12 Oct 2006, 10:00:00 EST by Timo Nieminen on behalf of School of Mathematics & Physics