Partitioning sets of quadruples into designs III

Sharry M.J. and Penfold Street A. (1991) Partitioning sets of quadruples into designs III. Discrete Mathematics, 92 1-3: 341-359. doi:10.1016/0012-365X(91)90292-A


Author Sharry M.J.
Penfold Street A.
Title Partitioning sets of quadruples into designs III
Journal name Discrete Mathematics   Check publisher's open access policy
ISSN 0012-365X
Publication date 1991-11-17
Sub-type Article (original research)
DOI 10.1016/0012-365X(91)90292-A
Volume 92
Issue 1-3
Start page 341
End page 359
Total pages 19
Subject 2607 Discrete Mathematics and Combinatorics
2614 Theoretical Computer Science
Abstract It is shown that the collection of all 11 4 quadruples chosen from a set of eleven points can be partitioned into eleven mutually disjoint 3-(10, 4, 1) designs in precisely 21 non-isomorphic ways.
Q-Index Code C1
Q-Index Status Provisional Code
Institutional Status Unknown

Document type: Journal Article
Sub-type: Article (original research)
Collection: Scopus Import
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 2 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 1 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Tue, 14 Jun 2016, 04:57:33 EST by System User