Cyclo-oxygenase (COX) inhibitors for treating preterm labour

Reinebrant, Hanna E., Pileggi-Castro, Cynthia, Romero, Carla L. T., dos Santos, Rafaela A. N., Kumar, Sailesh, Souza, Joao Paulo and Flenady, Vicki (2015) Cyclo-oxygenase (COX) inhibitors for treating preterm labour. Cochrane Database of Systematic Reviews, 6 6: . doi:10.1002/14651858.CD001992.pub3


Author Reinebrant, Hanna E.
Pileggi-Castro, Cynthia
Romero, Carla L. T.
dos Santos, Rafaela A. N.
Kumar, Sailesh
Souza, Joao Paulo
Flenady, Vicki
Title Cyclo-oxygenase (COX) inhibitors for treating preterm labour
Journal name Cochrane Database of Systematic Reviews   Check publisher's open access policy
ISSN 1469-493X
Publication date 2015-06-05
Sub-type Critical review of research, literature review, critical commentary
DOI 10.1002/14651858.CD001992.pub3
Open Access Status Not Open Access
Volume 6
Issue 6
Total pages 113
Place of publication Chichester, West Sussex, United Kingdom
Publisher John Wiley & Sons
Collection year 2016
Language eng
Formatted abstract
Background:  Preterm birth is a major cause of perinatal mortality and morbidity. Cyclo-oxygenase (COX) inhibitors inhibit uterine contractions, are easily administered and appear to have few maternal side effects. However, adverse effects have been reported in the fetus and newborn as a result of exposure to COX inhibitors.

Objectives:  
To assess the effects on maternal and neonatal outcomes of COX inhibitors administered as a tocolytic agent to women in preterm labour when compared with (i) placebo or no intervention and (ii) other tocolytics. In addition, to compare the effects of non-selective COX inhibitors with COX-2 selective inhibitors.

Search methods:  
We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (24 August 2014). We also contacted recognised experts and searched reference lists of retrieved studies.

Selection criteria:  
All published and unpublished randomised trials in which COX inhibitors were used for tocolysis for women in labour between 20 and 36 completed weeks' gestation.

Data collection and analysis:  
Two review authors independently evaluated methodological quality and extracted data. We sought additional information from study authors. Results are presented using risk ratio (RR; dichotomous data) and mean difference (MD; continuous data) with 95% confidence interval (CI). The number needed to treat for benefit (NNTB) and the number needed to treat for harm (NNTH) were calculated for statistically different categorical outcomes.

Main results:  
With the addition of seven studies with a total of 684 women, this review now includes outcome data from 20 studies including 1509 women. The non-selective COX inhibitor indomethacin was used in 15 studies. The overall quality of the included studies was considered moderate to low.

Three small studies (102 women), two of which were conducted in the 1980's, compared COX inhibition (indomethacin only) with placebo. No difference was shown in birth less than 48 hours after trial entry (average RR 0.20, 95% CI 0.03 to 1.28; two studies with 70 women). Indomethacin resulted in a reduction in preterm birth (before completion of 37 weeks of gestation) in one small study (36 women) (RR 0.21, 95% CI 0.07 to 0.62; NNTB 2, 95% CI 2 to 4); and an increase in gestational age at birth (average MD 3.59 weeks, 95% CI 0.65 to 6.52; two studies with 66 women) and birthweight (MD 716.34 g, 95% CI 425.52 to 1007.16; two studies with 67 infants). No difference was shown in measures of neonatal morbidity or neonatal mortality.

Compared with betamimetics, COX inhibitors resulted in a reduction in birth less than 48 hours after trial entry (RR 0.27, 95% CI 0.08 to 0.96; NNTB 7, 95% CI 6 to 120; two studies with 100 women) and preterm birth (before completion of 37 weeks of gestation) (RR 0.53, 95% CI 0.28 to 0.99; NNTB 6, 95% CI 4 to 236; two studies with 80 women) although no benefit was shown in terms of neonatal morbidity or mortality. COX inhibition was also associated with fewer maternal adverse affects compared with betamimetics (RR 0.19, 95% CI 0.11 to 0.31; NNTB 3, 95% CI 2 to 3; five studies with 248 women) and maternal adverse effects requiring cessation of treatment (average RR 0.09, 95% CI 0.02 to 0.49; NNTB 5, CI 95% 5 to 9; three studies with 166 women).

No differences were shown when comparing COX inhibitors with magnesium sulphate (MgSO4) (seven studies with 792 women) or calcium channel blockers (CCBs) (two studies with 230 women) in terms of prolonging pregnancy or for any fetal/neonatal outcomes. There were also no differences in very preterm birth (before completion of 34 weeks of gestation) and no maternal deaths occurred in the one study that reported on this outcome. However COX inhibitors resulted in fewer maternal adverse affects when compared with MgSO4 (RR 0.39, 95% CI 0.25 to 0.62; NNTB 11, 95% CI 9 to 17; five studies with 635 women).

A comparison of non-selective COX inhibitors versus any COX-2 inhibitor (two studies with 54 women) did not demonstrate any differences in maternal, fetal or neonatal outcomes.

No data were available to assess COX inhibitors compared with oxytocin receptor antagonists (ORAs). Further, no data were available on extremely preterm birth (before 28 weeks of gestation), longer-term infant outcomes or costs.

Authors' conclusions:  In this review, no clear benefit for COX inhibitors was shown over placebo or any other tocolytic agents. While some benefit was demonstrated in terms of postponement of birth for COX inhibitors over placebo and betamimetics and also maternal adverse effects over betamimetics and MgSO4, due to the limitations of small numbers, minimal data on safety, lack of longer-term outcomes and generally low quality of the studies included in this review, we conclude that there is insufficient evidence on which to base decisions about the role of COX inhibition for women in preterm labour. Further well-designed tocolytic studies are required to determine short- and longer-term infant benefit of COX inhibitors over placebo and other tocolytics, particularly CCBs and ORAs. Another important focus for future studies is identifying whether COX-2 inhibitors are superior to non-selective COX inhibitors. All future studies on tocolytics for women in preterm labour should assess longer-term effects into early childhood and also costs.
Q-Index Code C1
Q-Index Status Provisional Code
Institutional Status UQ

Document type: Journal Article
Sub-type: Critical review of research, literature review, critical commentary
Collections: Mater Research Institute-UQ (MRI-UQ)
Official 2016 Collection
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 6 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 14 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Wed, 30 Mar 2016, 10:25:53 EST by Julia McCabe on behalf of Learning and Research Services (UQ Library)