Choose your weaponry: selective storage of a single toxic compound, Latrunculin A, by closely related nudibranch molluscs

Cheney, Karen L., White, Andrew, Mudianta, I. Wayan, Winters, Anne E., Quezada, Michelle, Capon, Robert J., Mollo, Ernesto and Garson, Mary J. (2016) Choose your weaponry: selective storage of a single toxic compound, Latrunculin A, by closely related nudibranch molluscs. PLoS One, 11 1: 1-16. doi:10.1371/journal.pone.0145134


Author Cheney, Karen L.
White, Andrew
Mudianta, I. Wayan
Winters, Anne E.
Quezada, Michelle
Capon, Robert J.
Mollo, Ernesto
Garson, Mary J.
Title Choose your weaponry: selective storage of a single toxic compound, Latrunculin A, by closely related nudibranch molluscs
Journal name PLoS One   Check publisher's open access policy
ISSN 1932-6203
Publication date 2016-01-20
Sub-type Article (original research)
DOI 10.1371/journal.pone.0145134
Open Access Status DOI
Volume 11
Issue 1
Start page 1
End page 16
Total pages 16
Place of publication San Francisco, United States
Publisher Public Library of Science
Collection year 2017
Language eng
Formatted abstract
Natural products play an invaluable role as a starting point in the drug discovery process, and plants and animals use many interesting biologically active natural products as a chemical defense mechanism against predators. Among marine organisms, many nudibranch gastropods are known to derive defensive metabolites from the sponges they eat. Here we investigated the putative sequestration of the toxic compound latrunculin A—a 16-membered macrolide that prevents actin polymerization within cellular processes—which has been identified from sponge sources, by five closely related nudibranch molluscs of the genus Chromodoris. Only latrunculin A was present in the rim of the mantle of these species, where storage reservoirs containing secondary metabolites are located, whilst a variety of secondary metabolites were found in their viscera. The species studied thus selectively accumulate latrunculin A in the part of the mantle that is more exposed to potential predators. This study also demonstrates that latrunculin-containing sponges are not their sole food source. Latrunculin A was found to be several times more potent than other compounds present in these species of nudibranchs when tested by in vitro and in vivo toxicity assays. Anti-feedant assays also indicated that latrunculin A was unpalatable to rock pool shrimps, in a dose-dependent manner. These findings led us to propose that this group of nudibranchs has evolved means both to protect themselves from the toxicity of latrunculin A, and to accumulate this compound in the mantle rim for defensive purposes. The precise mechanism by which the nudibranchs sequester such a potent compound from sponges without disrupting their own key physiological processes is unclear, but this work paves the way for future studies in this direction. Finally, the possible occurrence of both visual and chemosensory Müllerian mimicry in the studied species is discussed.
Q-Index Code C1
Q-Index Status Provisional Code
Institutional Status UQ
Additional Notes Article # e0145134

 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 2 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 2 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Fri, 22 Jan 2016, 09:35:22 EST by Mrs Louise Nimwegen on behalf of School of Chemistry & Molecular Biosciences