Efficacy of acibenzolar-S-methyl (Bion®) treatment of Australian commercial passionfruit, Passiflora edulis f. sp. flavicarpa, on resistance to Passionfruit woodiness virus (PWV) and activities of chitinase & β-1,3-glucanase

Parkinson, L. E., Crew, K. S., Thomas, J. E. and Dann, E. K. (2015) Efficacy of acibenzolar-S-methyl (Bion®) treatment of Australian commercial passionfruit, Passiflora edulis f. sp. flavicarpa, on resistance to Passionfruit woodiness virus (PWV) and activities of chitinase & β-1,3-glucanase. Australasian Plant Pathology, 44 3: 311-318. doi:10.1007/s13313-015-0349-4


Author Parkinson, L. E.
Crew, K. S.
Thomas, J. E.
Dann, E. K.
Title Efficacy of acibenzolar-S-methyl (Bion®) treatment of Australian commercial passionfruit, Passiflora edulis f. sp. flavicarpa, on resistance to Passionfruit woodiness virus (PWV) and activities of chitinase & β-1,3-glucanase
Formatted title
Efficacy of acibenzolar-S-methyl (Bion®) treatment of Australian commercial passionfruit, Passiflora edulis f. sp. flavicarpa, on resistance to Passionfruit woodiness virus (PWV) and activities of chitinase & β-1,3-glucanase
Journal name Australasian Plant Pathology   Check publisher's open access policy
ISSN 0815-3191
1448-6032
Publication date 2015-05
Year available 2015
Sub-type Article (original research)
DOI 10.1007/s13313-015-0349-4
Open Access Status Not yet assessed
Volume 44
Issue 3
Start page 311
End page 318
Total pages 19
Place of publication Dordrecht, Netherlands
Publisher Springer Netherlands
Collection year 2016
Language eng
Formatted abstract
This greenhouse study investigated the efficacy of acibenzolar-S-methyl (Bion®) treatment of lower leaves of passionfruit, (Passiflora edulis f. sp. flavicarpa), on Passionfruit woodiness disease and activities of two pathogenesis-related proteins, chitinase and β-1,3-glucanase after inoculation with passionfruit woodiness virus (PWV). All Bion® concentrations reduced disease symptoms, but the concentration of 0.025 g active ingredient (a.i.)/l was the most effective, reducing disease severity in systemic leaves by 23, 29 and 30 % compared with water-treated controls at 30, 40 and 50 days post inoculation (dpi) with PWV, respectively. Correspondingly, relative virus concentration as determined by DAS-ELISA in the upper, untreated leaves (new growth) above the site of inoculation at 50 dpi was reduced by 17 and 22 % in plants treated with 0.025 and 0.05 g a.i./l, respectively. Bion® treatment and subsequent inoculation with PWV increased chitinase and β-1,3-glucanase activities in the new leaves above the site of inoculation at 30 dpi with PWV. It was concluded that optimal protective Bion® treatment concentrations were 0.025 and 0.05 g a.i./l.
Keyword Systemic acquired resistance
SAR
PR proteins
ASM
Granadilla
Virus resistance
Q-Index Code C1
Q-Index Status Confirmed Code
Institutional Status UQ

Document type: Journal Article
Sub-type: Article (original research)
Collections: Queensland Alliance for Agriculture and Food Innovation
Official 2016 Collection
School of Chemistry and Molecular Biosciences
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 0 times in Thomson Reuters Web of Science Article
Scopus Citation Count Cited 0 times in Scopus Article
Google Scholar Search Google Scholar
Created: Wed, 27 May 2015, 20:54:06 EST by Dr Elizabeth Dann on behalf of Centre for Plant Science