The influence of increasing temperature and CO2 on Fusarium crown rot susceptibility of wheat genotypes at key growth stages

Melloy, P., Aitken, E., Luck, J., Chakraborty, S. and Obanor, F. (2014) The influence of increasing temperature and CO2 on Fusarium crown rot susceptibility of wheat genotypes at key growth stages. European Journal of Plant Pathology, 140 1: 19-37. doi:10.1007/s10658-014-0441-6


Author Melloy, P.
Aitken, E.
Luck, J.
Chakraborty, S.
Obanor, F.
Title The influence of increasing temperature and CO2 on Fusarium crown rot susceptibility of wheat genotypes at key growth stages
Journal name European Journal of Plant Pathology   Check publisher's open access policy
ISSN 0929-1873
1573-8469
Publication date 2014-09
Year available 2014
Sub-type Article (original research)
DOI 10.1007/s10658-014-0441-6
Open Access Status
Volume 140
Issue 1
Start page 19
End page 37
Total pages 19
Place of publication Dordrecht, Netherlands
Publisher Springer Netherlands
Collection year 2015
Language eng
Formatted abstract
Despite recent reports advancing our understanding of climate change on plant diseases, uncertainty remains concerning how host and pathogen interactions are changed by increases in atmospheric carbon-dioxide (CO2) and temperature. This study has observed crown rot inoculated and non-inoculated plants in three glasshouse environments comprising ambient CO2 with ambient temperature (E1), elevated CO2 with ambient temperature (E2) and elevated CO2 with warm temperatures (E3). The proportion of crown rot infected tillers (incidence), length of stem browning (severity) and biomass of Fusarium pseudograminearum in 16 wheat genotypes was destructively assessed at node development, anthesis, soft dough and crop maturity. Mean incidence, severity and Fusarium biomass was greater in E2, and all three measurements increased at a faster rate across plant development stages; E1 showed the lowest mean incidence and severity. Incidence and severity at each development stage was dependent on the environment each genotype was grown. The influence of genotype on Fusarium biomass at each development stage however was not seen to be dependent on environment. Irrespective of genotype plants with greater severity or relative Fusarium biomass showed lower plant dry weight at crop maturity in all environments with exception to E3, where CR severity did not exert a cost to plant dry weight. These results may allude to plant maturity and temperature-dependent resistance as effective mechanisms in building resistance to crown rot. Regardless of temperature, if crown rot symptoms and Fusarium biomass are to increase at elevated CO2 there is potential for a loss in crop production capability while boosting inoculum in crop stubble.
Keyword Fusarium pseudograminearum
Crown rot
Carbon-dioxide
Plant-pathogen interaction
Temperature
Fungal biomass
Q-Index Code C1
Q-Index Status Confirmed Code
Institutional Status UQ

Document type: Journal Article
Sub-type: Article (original research)
Collections: School of Agriculture and Food Sciences
Official 2015 Collection
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 2 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 3 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Tue, 19 Aug 2014, 03:15:38 EST by System User on behalf of School of Agriculture and Food Sciences