Precision atomic gravimeter based on Bragg diffraction

Altin, P. A., Johnsson, M. T., Negnevitsky, V., Dennis, G. R., Anderson, R.P., Debs, J. E., Szigeti, S. S., Hardman, K. S., Bennetts, S., McDonald, G. D., Turner, L. D., Close, J. D. and Robins, N. P. (2013) Precision atomic gravimeter based on Bragg diffraction. New Journal of Physics, 15 . doi:10.1088/1367-2630/15/2/023009

Author Altin, P. A.
Johnsson, M. T.
Negnevitsky, V.
Dennis, G. R.
Anderson, R.P.
Debs, J. E.
Szigeti, S. S.
Hardman, K. S.
Bennetts, S.
McDonald, G. D.
Turner, L. D.
Close, J. D.
Robins, N. P.
Title Precision atomic gravimeter based on Bragg diffraction
Journal name New Journal of Physics   Check publisher's open access policy
ISSN 1367-2630
Publication date 2013
Year available 2013
Sub-type Article (original research)
DOI 10.1088/1367-2630/15/2/023009
Open Access Status DOI
Volume 15
Total pages 19
Place of publication Bristol, United Kingdom
Publisher Institute of Physics Publishing Ltd.
Collection year 2014
Language eng
Subject 3100 Physics and Astronomy
Abstract We present a precision gravimeter based on coherent Bragg diffraction of freely falling cold atoms. Traditionally, atomic gravimeters have used stimulated Raman transitions to separate clouds in momentum space by driving transitions between two internal atomic states. Bragg interferometers utilize only a single internal state, and can therefore be less susceptible to environmental perturbations. Here we show that atoms extracted from a magneto-optical trap using an accelerating optical lattice are a suitable source for a Bragg atom interferometer, allowing efficient beamsplitting and subsequent separation of momentum states for detection. Despite the inherently multi-state nature of atom diffraction, we are able to build a Mach-Zehnder interferometer using Bragg scattering which achieves a sensitivity to the gravitational acceleration of Δg/g = 2.7 × 10-9 with an integration time of 1000 s. The device can also be converted to a gravity gradiometer by a simple modification of the light pulse sequence.
Q-Index Code C1
Q-Index Status Provisional Code
Institutional Status Non-UQ

Document type: Journal Article
Sub-type: Article (original research)
Collection: School of Mechanical & Mining Engineering Publications
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 27 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 25 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Sat, 17 May 2014, 23:11:30 EST by Stuart Szigeti on behalf of Engineered Quantum Systems