The hmuUV genes of Sinorhizobium meliloti 2011 encode the permease and ATPase components of an ABC transport system for the utilization of both haem and the hydroxamate siderophores, ferrichrome and ferrioxamine B

Ó Cuív, Páraic, Keogh, Damien, Clarke, Paul and O'Connell, Michael (2008) The hmuUV genes of Sinorhizobium meliloti 2011 encode the permease and ATPase components of an ABC transport system for the utilization of both haem and the hydroxamate siderophores, ferrichrome and ferrioxamine B. Molecular Microbiology, 70 5: 1261-1273. doi:10.1111/j.1365-2958.2008.06479.x


Author Ó Cuív, Páraic
Keogh, Damien
Clarke, Paul
O'Connell, Michael
Title The hmuUV genes of Sinorhizobium meliloti 2011 encode the permease and ATPase components of an ABC transport system for the utilization of both haem and the hydroxamate siderophores, ferrichrome and ferrioxamine B
Formatted title
The hmuUV genes of Sinorhizobium meliloti 2011 encode the permease and ATPase components of an ABC transport system for the utilization of both haem and the hydroxamate siderophores, ferrichrome and ferrioxamine B
Journal name Molecular Microbiology   Check publisher's open access policy
ISSN 0950-382X
1365-2958
Publication date 2008-12
Sub-type Article (original research)
DOI 10.1111/j.1365-2958.2008.06479.x
Open Access Status
Volume 70
Issue 5
Start page 1261
End page 1273
Total pages 13
Place of publication Chichester, West Sussex, United Kingdom
Publisher Wiley-Blackwell Publishing
Formatted abstract
Sinorhizobium meliloti, the endosymbiont of Medicago sativa, can use haem compounds, including haemoglobin and leghaemoglobin, when growing in the free-living state. The components of the system involved in haem acquisition were confirmed to be ShmR, an outer membrane receptor, and HmuTUV, predicted to be an ABC transport system comprising a periplasmic protein, a permease and an ATPase respectively. The roles of HmuTUV in haem transport were confirmed in a heterologous expression system in Escherichia coli in conjunction with HasR, the outer membrane haem receptor of Serratia marcescens. hmuTUV mutants of S. meliloti showed a reduced capacity to acquire haem, suggesting the presence of a second haem acquisition system in the organism. S. meliloti can also acquire iron from xenosiderophores and the genes encoding the outer membrane receptors for ferrichrome and ferrioxamine B, fhuA1 and fhuA2, respectively, were identified. In light of this it is proposed that fhuA2 should be renamed foxA in the S. meliloti 1021 genome sequence. A siderophore reductase, FhuF, with the capacity to complement an E. coli ferrioxamine B reductase mutant, was identified encoded by a gene next to fhuA2. In the same transcriptional unit as fhuF the gene fhuP was identified and shown to encode a protein necessary for transport of ferrichrome and ferrioxamine B and predicted to be periplasmic. Interestingly, the remaining components of the transport system for the siderophores are HmuU and HmuV. Ferrichrome, ferrioxamine B and haem compounds therefore share components of the same transport system in S. meliloti.
Q-Index Code C1
Q-Index Status Provisional Code
Institutional Status Non-UQ

Document type: Journal Article
Sub-type: Article (original research)
Collection: UQ Diamantina Institute - Open Access Collection
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 16 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 13 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Wed, 19 Mar 2014, 11:31:06 EST by Paraic O Cuiv on behalf of UQ Diamantina Institute