Successful malaria elimination strategies require interventions that target changing vector behaviours

Russell, Tanya L., Beebe, Nigel W., Cooper, Robert D., Lobo, Neil F. and Burkot, Thomas R. (2013) Successful malaria elimination strategies require interventions that target changing vector behaviours. Malaria Journal, 12 1: 56.1-56.5. doi:10.1186/1475-2875-12-56


Author Russell, Tanya L.
Beebe, Nigel W.
Cooper, Robert D.
Lobo, Neil F.
Burkot, Thomas R.
Title Successful malaria elimination strategies require interventions that target changing vector behaviours
Journal name Malaria Journal   Check publisher's open access policy
ISSN 1475-2875
Publication date 2013-02
Year available 2013
Sub-type Article (original research)
DOI 10.1186/1475-2875-12-56
Open Access Status DOI
Volume 12
Issue 1
Start page 56.1
End page 56.5
Total pages 5
Place of publication London, United Kingdom
Publisher BioMed Central
Collection year 2014
Language eng
Formatted abstract
 Background: The ultimate long-term goal of malaria eradication was recently placed back onto the global health agenda. When planning for this goal, it is important to remember why the original Global Malaria Eradication Programme (GMEP), conducted with DDT-based indoor residual spraying (IRS), did not achieve its goals. One of the technical reasons for the failure to eliminate malaria was over reliance on a single intervention and subsequently the mosquito vectors developed behavioural resistance so that they did not come into physical contact with the insecticide.

Hypothesis and how to test it: Currently, there remains a monolithic reliance on indoor vector control. It is hypothesized that an outcome of long-term, widespread control is that vector populations will change over time, either in the form of physiological resistance, changes in the relative species composition or behavioural resistance. The potential for, and consequences of, behavioural resistance was explored by reviewing the literature regarding vector behaviour in the southwest Pacific.

Discussion: Here, two of the primary vectors that were highly endophagic, Anopheles punctulatus and Anopheles koliensis, virtually disappeared from large areas where DDT was sprayed. However, high levels of transmission have been maintained by Anopheles farauti, which altered its behaviour to blood-feed early in the evening and outdoors and, thereby, avoiding exposure to the insecticides used in IRS. This example indicates that the efficacy of programmes relying on indoor vector control (IRS and long-lasting, insecticide-treated nets [LLINs]) will be significantly reduced if the vectors change their behaviour to avoid entering houses.

Conclusions: Behavioural resistance is less frequently seen compared with physiological resistance (where the mosquito contacts the insecticide but is not killed), but is potentially more challenging to control programmes because the intervention effectiveness cannot be restored by rotating the insecticide to one with a different mode of action. The scientific community needs to urgently develop systematic methods for monitoring behavioural resistance and then to work in collaboration with vector control programmes to implement monitoring in sentinel sites. In situations where behavioural resistance is detected, there will be a need to target other bionomic vulnerabilities that may exist in the larval stages, during mating, sugar feeding or another aspect of the life cycle of the vector to continue the drive towards elimination.
Q-Index Code C1
Q-Index Status Confirmed Code
Institutional Status UQ
Additional Notes Article number 56

Document type: Journal Article
Sub-type: Article (original research)
Collections: Official 2014 Collection
School of Biological Sciences Publications
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 39 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 40 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Sun, 05 May 2013, 01:27:56 EST by System User on behalf of School of Biological Sciences