Estimating temperature-dependent developmental rates of potato tuberworm, Phthorimaea operculella (Lepidoptera: Gelechiidae)

Golizadeh, Ali and Zalucki, Myron P. (2012) Estimating temperature-dependent developmental rates of potato tuberworm, Phthorimaea operculella (Lepidoptera: Gelechiidae). Insect Science, 19 5: 609-620. doi:10.1111/j.1744-7917.2012.01503.x


Author Golizadeh, Ali
Zalucki, Myron P.
Title Estimating temperature-dependent developmental rates of potato tuberworm, Phthorimaea operculella (Lepidoptera: Gelechiidae)
Formatted title
Estimating temperature-dependent developmental rates of potato tuberworm, Phthorimaea operculella (Lepidoptera: Gelechiidae)
Journal name Insect Science   Check publisher's open access policy
ISSN 1672-9609
1744-7917
Publication date 2012-10
Sub-type Article (original research)
DOI 10.1111/j.1744-7917.2012.01503.x
Volume 19
Issue 5
Start page 609
End page 620
Total pages 12
Place of publication Oxford, United Kingdom
Publisher Wiley-Blackwell Publishing
Collection year 2013
Language eng
Formatted abstract
The potato tuberworm, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), is the most destructive pest of potato, Solanum tuberosum L. (Solanaceae), in tropical and subtropical regions in both field and storeroom situations. The modeling of temperature-dependent development can be useful in forecasting occurrence and population dynamics of the pests. Published developmental parameters for this pest vary greatly for many reasons. We determined temperature-dependent development of P. operculella at seven constant temperatures (16, 20, 24, 28, 32, 34 and 36 °C). Developmental period of whole immature stage (egg to the end of the pupal stage) varied from 75.5 days at 16 °C to 17 days at 32 °C. The population failed to survive at 36 °C. The observed data was modeled to determine mathematical functions for simulating P. operculella development in each stage of development and overall. Two linear models, ordinary linear regression and the Ikemoto linear model were used to describe the relationship between temperature and development rate of the different stages of P. operculella and estimating the thermal constant and lower temperature threshold. The lower temperature threshold (t) and thermal constant (k) of whole immature stage were estimated to be 11.6 °C and 338.5 DD by Ikemoto linear model, and the estimated parameters were not substantially different with those estimated by ordinary linear models. Different models provided a better fit to the various developmental stages. Of the eleven nonlinear models fitted, the Beriere-1, Logan-6 and Lactin-1 model was found to be the best for modeling development rate of egg, larva and pupa of P. operculella, respectively. Phenological models based on these findings can be part of a decision-support tool to improve the efficiency of pest management programs.
Keyword Development time
Linear model
Modeling
Nonlinear model
Phthorimaea operculella
Thermal characteristics
Q-Index Code C1
Q-Index Status Confirmed Code
Institutional Status UQ

Document type: Journal Article
Sub-type: Article (original research)
Collections: Official 2013 Collection
School of Biological Sciences Publications
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 4 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 5 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Wed, 31 Oct 2012, 13:14:18 EST by Gail Walter on behalf of School of Biological Sciences