Base-cation cycling by individual tree species in old-growth forests of Upper Michigan, USA

Fujinuma, Ryo, Bockheim, James and Balster, Nick (2005) Base-cation cycling by individual tree species in old-growth forests of Upper Michigan, USA. Biogeochemistry, 74 3: 357-376. doi:10.1007/s10533-004-4726-2

Author Fujinuma, Ryo
Bockheim, James
Balster, Nick
Title Base-cation cycling by individual tree species in old-growth forests of Upper Michigan, USA
Journal name Biogeochemistry   Check publisher's open access policy
ISSN 0168-2563
Publication date 2005-06
Sub-type Article (original research)
DOI 10.1007/s10533-004-4726-2
Volume 74
Issue 3
Start page 357
End page 376
Total pages 20
Place of publication Dordrecht, Netherlands
Publisher Springer Netherlands
Language eng
Formatted abstract
The influence of individual tree species on base-cation (Ca, Mg, K, Na) distribution and cycling was examined in sugar maple (Acer saccharum Marsh.), basswood (Tilia americana L.), and hemlock (Tsuga canadensis L.) in old-growth northern hardwood - hemlock forests on a sandy, mixed, frigid, Typic Haplorthod over two growing seasons in northwestern Michigan. Base cations in biomass, forest floor, and mineral soil (0-15 cm and 15-40 cm) pools were estimated for five replicated trees of each species; measured fluxes included bulk precipitation, throughfall, stemflow, litterfall, forest-floor leachate, mineralization + weathering, shallow-soil leachate, and deep-soil leachate. The three species differed in where base cations had accumulated within the single-tree ecosystems. Within these three single-tree ecosystems, the greatest quantity of base cations in woody biomass was found in sugar maple, whereas hemlock and basswood displayed the greatest amount in the upper 40 cm of mineral soil. Base-cation pools were ranked: sugar maple > basswood, hemlock in woody biomass; sugar maple, basswood > hemlock in foliage; hemlock > sugar maple, basswood in the forest floor, and basswood > sugar maple, hemlock in the mineral soil. Base-cation fluxes in throughfall, stemflow, the forest-floor leachate, and the deep-soil leachate (2000 only) were ranked: basswood > sugar maple > hemlock. Our measurements suggest that species-related differences in nutrient cycling are sufficient to produce significant differences in base-cation contents of the soil over short time intervals (<65 years). Moreover, these species-mediated differences may be important controls over the spatial pattern and edaphic processes of northern hardwood-hemlock ecosystems in the upper Great Lakes region.
Keyword Acer saccharum
Forest soils
Nutrient cycling
Q-Index Code C1
Q-Index Status Provisional Code
Institutional Status Non-UQ

Document type: Journal Article
Sub-type: Article (original research)
Collection: School of Agriculture and Food Sciences
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 35 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 36 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Wed, 11 Jul 2012, 13:54:59 EST by Ryosuke Fujinuma on behalf of School of Agriculture and Food Sciences