Brain templates and atlases

Evans, Alan C., Janke, Andrew L., Collins, D. Louis and Baillet, Sylvain (2012) Brain templates and atlases. NeuroImage, 62 2: 911-922. doi:10.1016/j.neuroimage.2012.01.024


Author Evans, Alan C.
Janke, Andrew L.
Collins, D. Louis
Baillet, Sylvain
Title Brain templates and atlases
Journal name NeuroImage   Check publisher's open access policy
ISSN 1053-8119
1095-9572
Publication date 2012
Sub-type Critical review of research, literature review, critical commentary
DOI 10.1016/j.neuroimage.2012.01.024
Volume 62
Issue 2
Start page 911
End page 922
Total pages 12
Place of publication Maryland Heights, MO, United States
Publisher Academic Press
Collection year 2013
Language eng
Formatted abstract
The core concept within the field of brain mapping is the use of a standardized, or “stereotaxic”, 3D coordinate frame for data analysis and reporting of findings from neuroimaging experiments. This simple construct allows brain researchers to combine data from many subjects such that group-averaged signals, be they structural or functional, can be detected above the background noise that would swamp subtle signals from any single subject. Where the signal is robust enough to be detected in individuals, it allows for the exploration of inter-individual variance in the location of that signal. From a larger perspective, it provides a powerful medium for comparison and/or combination of brain mapping findings from different imaging modalities and laboratories around the world. Finally, it provides a framework for the creation of large-scale neuroimaging databases or “atlases” that capture the population mean and variance in anatomical or physiological metrics as a function of age or disease.
However, while the above benefits are not in question at first order, there are a number of conceptual and practical challenges that introduce second-order incompatibilities among experimental data. Stereotaxic mapping requires two basic components: (i) the specification of the 3D stereotaxic coordinate space, and (ii) a mapping function that transforms a 3D brain image from “native” space, i.e. the coordinate frame of the scanner at data acquisition, to that stereotaxic space. The first component is usually expressed by the choice of a representative 3D MR image that serves as target “template” or atlas. The native image is re-sampled from native to stereotaxic space under the mapping function that may have few or many degrees of freedom, depending upon the experimental design. The optimal choice of atlas template and mapping function depend upon considerations of age, gender, hemispheric asymmetry, anatomical correspondence, spatial normalization methodology and disease-specificity. Accounting, or not, for these various factors in defining stereotaxic space has created the specter of an ever-expanding set of atlases, customized for a particular experiment, that are mutually incompatible.
These difficulties continue to plague the brain mapping field. This review article summarizes the evolution of stereotaxic space in term of the basic principles and associated conceptual challenges, the creation of population atlases and the future trends that can be expected in atlas evolution.
Keyword Brain atlases
MRI templates
Spatial normalization
Databases
Q-Index Code C1
Q-Index Status Provisional Code
Institutional Status Non-UQ
Additional Notes Available online 10 January 2012

Document type: Journal Article
Sub-type: Critical review of research, literature review, critical commentary
Collections: Non HERDC
Centre for Advanced Imaging Publications
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 78 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 81 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Mon, 18 Jun 2012, 13:49:03 EST by Sandrine Ducrot on behalf of Centre for Advanced Imaging