AlgaGEM - A genome-scale metabolic reconstruction of Algae based on Chlamydomonas reinhardtii genome

Dal'Molin, Cristiana Gomes de Oliveira, Quek, Lake-Ee, Palfreyman, Robin W. and Nielsen, Lars K. (2011) AlgaGEM - A genome-scale metabolic reconstruction of Algae based on Chlamydomonas reinhardtii genome. BMC Genomics, 12 Suppl. 4: s5.1-s5.10. doi:10.1186/1471-2164-12-S4-S5

Author Dal'Molin, Cristiana Gomes de Oliveira
Quek, Lake-Ee
Palfreyman, Robin W.
Nielsen, Lars K.
Title AlgaGEM - A genome-scale metabolic reconstruction of Algae based on Chlamydomonas reinhardtii genome
Journal name BMC Genomics   Check publisher's open access policy
ISSN 1471-2164
Publication date 2011-12-22
Sub-type Article (original research)
DOI 10.1186/1471-2164-12-S4-S5
Open Access Status DOI
Volume 12
Issue Suppl. 4
Start page s5.1
End page s5.10
Total pages 10
Place of publication London, United Kingdom
Publisher BioMed Central
Collection year 2012
Language eng
Formatted abstract
Microalgae have the potential to deliver biofuels without the associated competition for land resources. In order to realise the rates and titres necessary for commercial production, however, system-level metabolic engineering will be required. Genome scale metabolic reconstructions have revolutionized microbial metabolic engineering and are used routinely for in silico analysis and design. While genome scale metabolic reconstructions have been developed for many prokaryotes and model eukaryotes, the application to less well characterized eukaryotes such as algae is challenging not at least due to a lack of compartmentalization data.

We have developed a genome-scale metabolic network model (named AlgaGEM) covering the metabolism for a compartmentalized algae cell based on the Chlamydomonas reinhardtii genome. AlgaGEM is a comprehensive literature-based genome scale metabolic reconstruction that accounts for the functions of 866 unique ORFs, 1862 metabolites, 2249 gene-enzyme-reaction-association entries, and 1725 unique reactions. The reconstruction was compartmentalized into the cytoplasm, mitochondrion, plastid and microbody using available data for algae complemented with compartmentalisation data for Arabidopsis thaliana. AlgaGEM describes a functional primary metabolism of Chlamydomonas and significantly predicts distinct algal behaviours such as the catabolism or secretion rather than recycling of phosphoglycolate in photorespiration. AlgaGEM was validated through the simulation of growth and algae metabolic functions inferred from literature. Using efficient resource utilisation as the optimality criterion, AlgaGEM predicted observed metabolic effects under autotrophic, heterotrophic and mixotrophic conditions. AlgaGEM predicts increased hydrogen production when cyclic electron flow is disrupted as seen in a high producing mutant derived from mutational studies. The model also predicted the physiological pathway for H 2 production and identified new targets to further improve H 2 yield.


AlgaGEM is a viable and comprehensive framework for in silico functional analysis and can be used to derive new, non-trivial hypotheses for exploring this metabolically versatile organism. Flux balance analysis can be used to identify bottlenecks and new targets to metabolically engineer microalgae for production of biofuels.
Q-Index Code C1
Q-Index Status Confirmed Code
Institutional Status UQ

Document type: Journal Article
Sub-type: Article (original research)
Collections: Official 2012 Collection
Australian Institute for Bioengineering and Nanotechnology Publications
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 38 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 33 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Wed, 21 Mar 2012, 10:00:38 EST by Ms Lynette Adams on behalf of Aust Institute for Bioengineering & Nanotechnology