Restricted set addition: The exceptional case of the Erdos-Heilbronn conjecture

Karolyi, Gyula (2009) Restricted set addition: The exceptional case of the Erdos-Heilbronn conjecture. Journal of Combinatorial Theory: Series A, 116 3: 741-746. doi:10.1016/j.jcta.2008.08.005


Author Karolyi, Gyula
Title Restricted set addition: The exceptional case of the Erdos-Heilbronn conjecture
Formatted title
Restricted set addition: The exceptional case of the Erdős–Heilbronn conjecture
Journal name Journal of Combinatorial Theory: Series A   Check publisher's open access policy
ISSN 0097-3165
1096-0899
Publication date 2009-04
Year available 2008
Sub-type Article (original research)
DOI 10.1016/j.jcta.2008.08.005
Volume 116
Issue 3
Start page 741
End page 746
Total pages 6
Place of publication Maryland Heights, MO, United States
Publisher Academic Press
Language eng
Formatted abstract
Let AB be nonempty subsets of the group of integers modulo a prime p. If p⩾|A|+|B|−2, then at least |A|+|B|−2 different residue classes can be represented as a+b, where aA, bB and ab. This result complements the solution of a problem of Erdős and Heilbronn obtained by Alon, Nathanson, and Ruzsa.
Keyword Erdos-Heilbronn conjecture
Restricted set addition
Combinatorial Nullstellensatz
Structural theory of set addition
Q-Index Code C1
Q-Index Status Provisional Code
Institutional Status Non-UQ
Additional Notes Published under Notes. Available online 1 November 2008.

Document type: Journal Article
Sub-type: Article (original research)
Collections: School of Mathematics and Physics
ERA 2012 Admin Only
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 3 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 4 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Thu, 23 Feb 2012, 15:49:48 EST by Kay Mackie on behalf of Mathematics