Oxidative Bioactivation of Crotyl Alcohol to the Toxic Endogenous Aldehyde Crotonaldehyde: Association of Protein Carbonylation with Toxicity in Mouse Hepatocytes

Fontaine, Frank R., Dunlop, Rachael A., Petersen, Dennis R. and Burcham, Philip C. (2002) Oxidative Bioactivation of Crotyl Alcohol to the Toxic Endogenous Aldehyde Crotonaldehyde: Association of Protein Carbonylation with Toxicity in Mouse Hepatocytes. Chemical Research in Toxicology, 15 8: 1051-1058. doi:10.1021/tx0255119


Author Fontaine, Frank R.
Dunlop, Rachael A.
Petersen, Dennis R.
Burcham, Philip C.
Title Oxidative Bioactivation of Crotyl Alcohol to the Toxic Endogenous Aldehyde Crotonaldehyde: Association of Protein Carbonylation with Toxicity in Mouse Hepatocytes
Journal name Chemical Research in Toxicology   Check publisher's open access policy
ISSN 0893-228X
Publication date 2002-01-01
Sub-type Article (original research)
DOI 10.1021/tx0255119
Volume 15
Issue 8
Start page 1051
End page 1058
Total pages 8
Place of publication Washington, D.C. USA
Publisher American Chemical Society
Language eng
Subject 111506 Toxicology (incl.Clinical Toxicology)
Abstract Recent confirmation that the toxic unsaturated aldehyde crotonaldehyde (CA) contributes to protein damage during lipid peroxidation confers interest on the molecular actions of this substance. However, since a plethora of structurally related aldehydes form during membrane oxidation, clarifying the toxicological significance of individual products (e.g., CA) is challenging. To facilitate study of the mechanisms underlying CA toxicity, we explored the possibility that it can be formed enzymatically from an unsaturated precursor, crotyl alcohol. This is analogous to the way allyl alcohol is converted in vivo to its toxic oxidation product, acrolein. In kinetic studies, we found that crotyl alcohol was readily oxidized by equine liver alcohol dehydrogenase, with electrospray-mass spectrometry confirming that CA was the main product formed. Moreover, in mouse hepatocytes, crotyl alcohol produced marked time- and concentration-dependent cell killing as well as pronounced glutathione depletion. Both cytotoxicity and glutathione loss were abolished by the alcohol dehydrogenase inhibitor 4-methylpyrazole, indicating an oxidation product mediated these effects. In keeping with expectations that carbonyl-retaining Michael addition adducts would feature prominently during protein modification by CA, exposure to crotyl alcohol resulted in marked carbonylation of a wide range of cell proteins, an effect that was also abolished by 4-methylpyrazole. Damage to a subset of small proteins (e.g., 29, 32, 33 kDa) closely correlated with the severity of cell death. Collectively, these results demonstrate that crotyl alcohol is a useful tool for studying the biochemical and molecular events accompanying intracellular CA formation.
Q-Index Code C1
Q-Index Status Provisional Code
Institutional Status Unknown

Document type: Journal Article
Sub-type: Article (original research)
Collection: Institute for Molecular Bioscience - Publications
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 13 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 16 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Tue, 13 Jul 2010, 22:52:52 EST by Laura McTaggart on behalf of Institute for Molecular Bioscience