High current generation coupled to caustic production using a lamellar bioelectrochemical system

Rabaey, Korneel, Butzer, Simone, Brown, Shelley, Keller, Jurg and Rozendal, Rene A. (2010) High current generation coupled to caustic production using a lamellar bioelectrochemical system. Environmental Science & Technology, 44 11: 4315-4321. doi:10.1021/es9037963

Author Rabaey, Korneel
Butzer, Simone
Brown, Shelley
Keller, Jurg
Rozendal, Rene A.
Title High current generation coupled to caustic production using a lamellar bioelectrochemical system
Journal name Environmental Science & Technology   Check publisher's open access policy
ISSN 0013-936X
Publication date 2010-05-06
Sub-type Article (original research)
DOI 10.1021/es9037963
Volume 44
Issue 11
Start page 4315
End page 4321
Total pages 7
Editor Jerald Schnoor
Place of publication United States
Publisher American Chemical Society
Collection year 2011
Language eng
Abstract Recently, bioelectrochemical systems (BESs) have emerged as a promising technology for energy and product recovery from wastewaters. To become economically viable, BESs need to (i) reach sufficient turnover rates at scale and (ii) generate a product that offsets the investment costs within a reasonable time frame. Here we used a liter scale, lamellar BES to produce a caustic solution at the cathode. The reactor was operated as a three-electrode system, in which the anode potential was fixed and power was supplied over the reactor to allow spontaneous anodic current generation. In laboratory conditions, with acetate as electron donor in the anode, the system generated up to 1.05 A (at 1.77 V applied cell voltage, 1015 A m−3 anode volume), and allowed for the production of caustic to 3.4 wt %, at an acetate to caustic efficiency of 61%. The reactor was subsequently operated on a brewery site, directly using effluent from the brewing process. Currents of up to 0.38 A were achieved within a six-week time frame. Considerable fluctuations over weekly periods were observed, due to operational parameter changes. This study is the first to demonstrate effective production of caustic at liter scale, using BESs both in laboratory and field conditions. It also shows that input of power can easily be justified by product value.
Keyword Microbial fuel-cells
Oxygen Reduction
References (1) Logan, B.; Aelterman, P.; Hamelers, B.; Rozendal, R.; Schroder, U.; Keller, J.; Freguia, S.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40 (17), 5181–5192. (2) Rabaey, K.; Verstraete, W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005, 23 (6), 291–298. (3) Rozendal, R. A.; Hamelers, H. V. M.; Rabaey, K.; Keller, J.; Buisman, C. J. N. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol. 2008, 26 (8), 450–459. (4) Liu, H.; Grot, S.; Logan, B. E. Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol. 2005, 39 (11), 4317–4320. (5) Rozendal, R. A.; Hamelers, H. V. M.; Euverink, G. J. W.; Metz, S. J.; Buisman, C. J. N. Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrogen Energy 2006, 31 (12), 1632–1640. (6) Clauwaert, P.; Rabaey, K.; Aelterman, P.; De Schamphelaire, L.; The Pham, H.; Boeckx, P.; Boon, N.; Verstraete, W. Biological denitrification driven by microbial fuel cells. Environ. Sci. Technol. 2007, 41 (9), 3354–3360. (7) Thrash, J. C.; VanTrump, J. I.; Weber, K. A.; Miller, E.; Achenbach, L. A.; Coates, J. D. Electrochemical stimulation of microbial perchlorate reduction. Environ. Sci. Technol. 2007, 41 (5), 1740– 1746. (8) Tender, L. M.; Reimers, C. E.; Stecher, H. A.; Holmes, D. E.; Bond, D. R.; Lowy, D. A.; Pilobello, K.; Fertig, S. J.; Lovley, D. R. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 2002, 20 (8), 821–825. (9) Rabaey, K.; Rodriguez, J.; Blackall, L. L.; Keller, J.; Gross, P.; Batstone, D.; Verstraete, W.; Nealson, K. H. Microbial ecology meets electrochemistry: Electricity-driven and driving communities. ISME J 2007, 1 (1), 9–18. (10) Clauwaert, P.; Toledo, R.; Van der Ha, D.; Crab, R.; Verstraete, W.; Hu, H.; Udert, K. M.; Rabaey, K. Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci. Technol. 2008, 57 (4), 575–579. (11) Rozendal,R. A.; Leone, E.; Keller, J.; Rabaey, K. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem. Commun. 2009, 11 (9), 1752–1755. (12) Rozendal, R. A.; Hamelers, H. V. M.; Buisman, C. J. N. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol. 2006, 40 (17), 5206–5211. (13) Liu, H.; Logan, B. E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 2004, 38 (14), 4040–4046. (14) Torres, C. I.; Lee, H. S.; Rittmann, B. E. Carbonate species as OH- carriers for decreasing the pH gradient between cathode and anode in biological fuel cells. Environ. Sci. Technol. 2008, 42 (23), 8773–8777. (15) Fornero, J. J.; Rosenbaum, M.; Cotta, M. A.; Angenent, L. T. , Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity. Environ. Sci. Technol. 2010, 44 (7), 2728-2734. (16) Freguia, S.; Rabaey, K.; Yuan, Z. G.; Keller, J. Sequential anodecathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res. 2008, 42 (6- 7), 1387–1396. (17) Cheng, K. Y.; Ho, G.; Cord-Ruwisch, R. Anodophilic biofilm catalyzes cathodic oxygen reduction. Environ. Sci. Technol. 2009, 44 (1), 518–525. (18) Rabaey, K.; Ossieur, W.; Verhaege, M.; Verstraete, W. Continuous microbial fuel cells convert carbohydrates to electricity. Water Sci. Technol. 2005, 52 (1-2), 515–523. (19) Rabaey, K.; Clauwaert, P.; Aelterman, P.; Verstraete, W. Tubular microbial fuel cells for efficient electricity generation. Environ. Sci. Technol. 2005, 39 (20), 8077–8082. (20) Aelterman, P.; Freguia, S.; Keller, J.; Verstraete, W.; Rabaey, K. The anode potential regulates bacterial activity in microbial fuel cells. Appl. Microbiol. Biotechnol. 2008, 78 (3), 409–418. (21) Greenberg, A.; Clesceri, L. S.; Eaton, A. D. Standard Methods for the Examination of Water and Wastewater, 18th ed.; American Public Health Association: Washington:, 1992. (22) Clauwaert, P.; Aelterman, P.; Pham, T. H.; De Schamphelaire, L.; Carballa, M.; Rabaey, K.; Verstraete, W., Minimizing losses in bio-electrochemical systems: the road to applications. Appl. Microbiol. Biotechnol. 2008. (23) Kim, J. R.; Zuo, Y.; Regan, J. M.; Logan, B. E. Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnol. Bioeng. 2008, 99 (5), 1120–1127. (24) Clauwaert, P.; Mulenga, S.; Aelterman, P.; Verstraete, W. Litrescale microbial fuel cells operated in a complete loop. Appl. 4320 9 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 44, NO. 11, 2010 Microbiol. Biotechnol. 2009, 83 (2), 241–247. (25) Dewan, A.; Beyenal, H.; Lewandowski, Z. Scaling up microbial fuel cells. Environ. Sci. Technol. 2008, 42 (20), 7643–7648. (26) Hamelers, H. V. M.; Sleutels, T. H. J. A.; Jeremiasse, A. W.; Post, J. W.; Strik, D. P. B. T. B.; Rozendal, R. A., Technological Factors Affecting BES Performance and Bottlenecks Towards Scale up. In Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application; Rabaey, K. ; Angenent, L. T. ; Schroder, U. ; Keller, J. , Eds.; IWA Publishing: London, 2009. (27) Cheng, S.; Liu, H.; Logan, B. E. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol. 2006, 40 (7), 2426–2432. (28) Zhao, F.; Harnisch, F.; Schroder, U.; Scholz, F.; Bogdanoff, P.; Herrmann, I. Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem. Commun. 2005, 7 (12), 1405–1410.
Q-Index Code C1
Q-Index Status Confirmed Code
Institutional Status UQ
Additional Notes Published online 5 June, 2010.

Document type: Journal Article
Sub-type: Article (original research)
Collections: Official 2011 Collection
Advanced Water Management Centre Publications
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 100 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 113 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Sun, 13 Jun 2010, 00:05:55 EST