Blooms of the toxic cyanobacterium Lyngbya majuscula in Moreton Bay: links to anthropogenic nutrients

Kathleen Ahern (2009). Blooms of the toxic cyanobacterium Lyngbya majuscula in Moreton Bay: links to anthropogenic nutrients PhD Thesis, School of Civil Engineering, The University of Queensland.

Attached Files (Some files may be inaccessible until you login with your UQ eSpace credentials)
Name Description MIMEType Size Downloads
s33584094_PhD_abstract.pdf s33584094_PhD_abstract.pdf Click to show the corresponding preview/stream application/pdf 13.63KB 4
s33584094_PhD_totalthesis.pdf Final Thesis Lodgement Click to show the corresponding preview/stream application/pdf 8.02MB 26
Author Kathleen Ahern
Thesis Title Blooms of the toxic cyanobacterium Lyngbya majuscula in Moreton Bay: links to anthropogenic nutrients
School, Centre or Institute School of Civil Engineering
Institution The University of Queensland
Publication date 2009-02
Thesis type PhD Thesis
Supervisor James Udy
Glen Shaw
Catherine Lovelock
Total pages 331
Total colour pages 30
Total black and white pages 301
Subjects 09 Engineering
Abstract/Summary The increased proliferation of benthic marine cyanobacteria of the Lyngbya genus in many tropical and subtropical systems worldwide is a concern due to the detrimental impacts these blooms can have on ecosystems, local economies and public health. While increasing nutrient loads from anthropogenic sources/activities has been hypothesised as the main cause, evidence to support this is limited. This hypothesis was explored by investigating blooms of the toxic, benthic cyanobacterium Lyngbya majuscula in a sub-tropical shallow coastal embayment (Moreton Bay) in southeast Queensland, Australia—where blooms have increased in frequency and severity. More specifically, the thesis aimed to investigate the role of nutrients in the physiology and growth dynamics of L. majuscula in Moreton Bay through examination of three main research questions. Examination of the spatial and temporal variations in the growth and nutritional status of L. majuscula in Moreton Bay (Research Question 1) was investigated by tracking natural summer blooms in northeastern Moreton Bay (Deception Bay) over two successive years. Detailed field observations, extensive biomass and tissue nutrient sampling (every 10–14 days) and a three-dimensional model were used to map the change in areal extent, biomass and tissue nutrients over the course of the blooms. The results demonstrated the innate ability of L. majuscula to rapidly spread and generate massive amounts of biomass, with the peak biomass calculated at 5057 tww in the 2005–2006 and 10 213 tww in the 2006–2007 seasons. A sequence of phases showing differing appearance, biomass growth and tissue nutrient changes were identified and documented. The role of nutrients (individually and collectively) in the enhancement of L. majuscula growth (Research Question 2) was investigated using a combination of comprehensive laboratory experiments (filament growth, 14C-bicarbonate uptake rate and biomass increase) and in-situ field experiments. Addition of nutrients to the water column were shown to promote prolific L. majuscula growth in the laboratory; this was confirmed in field experiments at two locations in Moreton Bay—showing nutrients can be a major causal factor in bloom formation. Additions of phosphorus (macronutrient) and iron (required for photosynthesis and nitrogen-fixation) caused the greatest stimulation of L. majuscula in both laboratory and field experiments. The form of iron was shown to be important —organically complexed iron (FeEDTA) was substantially more effective in promoting L. majuscula growth under laboratory conditions than inorganic iron (FeCl3). This is important as FeEDTA mirrors the naturally occurring iron organic complexes (which increase the solubility of iron) in waters from the region. The effect of nitrogen additions was more complex—likely due to the capacity of L. majuscula to fix atmospheric nitrogen reducing reliance on an inorganic nitrogen source. In the high light conditions experienced in this study, L. majuscula appeared to acquire nitrogen: (i) directly from the dissolved inorganic nitrogen in the water column—evidenced by a positive response to the nitrogen treatments; and, (ii) through enhanced nitrogen-fixation rates when iron and/or phosphorus were added in the absence of nitrogen—inferred from a substantial increase in the total nitrogen content of the L. majuscula biomass (nitrogen-fixation was not measured directly). The main sources of naturally occurring nutrients likely to promote L. majuscula blooms in Moreton Bay (Research Question 3) were investigated using laboratory experiments, soil and water analyses, and GIS-based modelling. The potential for groundwater/surfacewater from different vegetation, soils, geology and landuses within the study area catchments to stimulate L. majuscula response (14C-bicarbonate uptake rate) was tested in laboratory bioassays. Areas with acid sulfate soils (ASS), Melaleuca vegetation, pine plantations and Casuarina on ASS all had waters that enhanced L. majuscula growth. To investigate causal agents, bioassay response data and water analyses were subject to multiple regression and correlation analysis; this confirmed the importance of iron, phosphorus and nitrogen to L. majuscula growth and the roles of low pH and dissolved organic carbon, the latter two appearing to influence the chemical state and enhance the solubility of nutrients to L. majuscula. This information was incorporated into a GIS-based model to identify areas of hazard which were most likely to supply/export nutrients to Moreton Bay. These hazard maps, with further local verification, will be used as planning and decision support tools to assist government and landuse managers to limit the mobilisation and transport of key nutrients to potential bloom sites. The results from this thesis demonstrate that a precautionary approach to limit phosphorus, iron, nitrogen and dissolved organic carbon to waterways is necessary; otherwise the magnitude of L. majuscula blooms is likely to increase in Moreton Bay as coastal development intensifies with the predicted population increase. The thesis findings provide strong support for the hypothesised link between nutrients and the increased proliferation of Lyngbya and other benthic cyanobacteria blooms and are likely to be applicable to other areas where environmental conditions are suitable for their growth.
Keyword blooms
Lyngbya majuscula
Additional Notes Landscape pages: 54, 55, 63, 93, 106, 215, 225, 283, 284 Colour pages: 43, 45, 63, 71, 75, 76, 84, 106, 112, 113, 120, 133, 165, 191, 196, 225, 244, 283, 284, 286, 287, 289, 324-331

Citation counts: Google Scholar Search Google Scholar
Access Statistics: 551 Abstract Views, 30 File Downloads  -  Detailed Statistics
Created: Wed, 09 Jun 2010, 21:21:01 EST by Ms Kathleen Ahern on behalf of Library - Information Access Service