Restoration thinning accelerates structural development and carbon sequestration in an endangered Australian ecosystem

Dwyer, John M., Fensham, Rod and Buckley, Yvonne M. (2010) Restoration thinning accelerates structural development and carbon sequestration in an endangered Australian ecosystem. Journal of Applied Ecology, 47 3: 681-691. doi:10.1111/j.1365-2664.2010.01775.x


Author Dwyer, John M.
Fensham, Rod
Buckley, Yvonne M.
Title Restoration thinning accelerates structural development and carbon sequestration in an endangered Australian ecosystem
Journal name Journal of Applied Ecology   Check publisher's open access policy
ISSN 0021-8901
1365-2664
Publication date 2010-06
Sub-type Article (original research)
DOI 10.1111/j.1365-2664.2010.01775.x
Volume 47
Issue 3
Start page 681
End page 691
Total pages 11
Place of publication Oxford, United Kingdom
Publisher Wiley-Blackwell Publishing
Collection year 2011
Language eng
Subject C1
960805 Flora, Fauna and Biodiversity at Regional or Larger Scales
060207 Population Ecology
Formatted abstract
1. Restoration thinning involves the selective removal of stems in woody ecosystems to restore historical or ecologically desirable ecosystem structure and processes. Thinning may also accelerate carbon sequestration in dense regenerating forests. This study considers restoration thinning effects on both structural development and carbon sequestration in a regenerating forest ecosystem.

2. An experimental thinning trial was established in dense Acacia harpophylla regrowth in southern Queensland, Australia. The mean stem density prior to thinning was 17 000 stems ha−1. Four treatments (no thinning and thinning down to 1000, 2000 and 4000 stems ha−1) were applied in a randomized block design. Growth and mortality of a subset of stems was monitored for 2 years. Mixed-effects models and hierarchical Bayesian models (HBMs) were used to test for treatment effects and to explore relationships between neighbourhood density variables and the growth and mortality of stems. The HBMs were subsequently used to parameterise an individual-based simulation model of stand structural development and biomass accumulation over 50 years.

3. The circumference growth rates of stems in thinning treatments were significantly higher than in the control. Woody species diversity and grass cover were also significantly higher in thinning treatments and were strongly negatively correlated with canopy cover. The HBMs confirmed that both growth and mortality were density dependent to some extent.

4. The simulation model predicted a net gain in living above-ground biomass in some thinning treatments (compared with the control treatment) within 20 years after thinning. The 6000 stems ha−1 treatment was predicted to be the optimal thinning density for structural development towards the structure of a nearby mature reference forest.

5. Synthesis and applications. Naturally regenerating woody vegetation provides important habitat for native fauna in fragmented landscapes and represents an efficient means to reinstate habitat connectivity and increase forest area. Many regrowth ecosystems also have considerable potential as land-based carbon sinks. This study demonstrates that restoration thinning can be applied to accelerate stem growth and woody species recruitment and may also accelerate structural development and carbon sequestration in this extensive regrowth ecosystem. The application of restoration thinning to provide dual restoration and carbon benefits should be explored for a wider range of naturally regenerating woody ecosystems.
Copyright © 1999–2011 John Wiley & Sons, Inc. All Rights Reserved.

Keyword Acacia harpophylla
Brigalow
Hierarchical Bayesian models
Individual-based models
Multi-level models
Queensland
Q-Index Code C1
Q-Index Status Confirmed Code
Institutional Status UQ

Document type: Journal Article
Sub-type: Article (original research)
Collections: Official 2011 Collection
School of Biological Sciences Publications
Ecology Centre Publications
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 29 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 33 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Sun, 16 May 2010, 00:04:30 EST