Formulation of Peptide Surfactant-Stabilised Emulsions for siRNA Delivery

Kaiyin Hu (2010). Formulation of Peptide Surfactant-Stabilised Emulsions for siRNA Delivery MPhil Thesis, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland.

Attached Files (Some files may be inaccessible until you login with your UQ eSpace credentials)
Name Description MIMEType Size Downloads
s41300963_MPhil_abstract.pdf s41300963_MPhil_abstract.pdf application/pdf 19.37KB 2
s41300963_MPhil_totalthesis.pdf Final thesis lodgement application/pdf 9.14MB 19
Author Kaiyin Hu
Thesis Title Formulation of Peptide Surfactant-Stabilised Emulsions for siRNA Delivery
School, Centre or Institute Australian Institute for Bioengineering and Nanotechnology
Institution The University of Queensland
Publication date 2010-02
Thesis type MPhil Thesis
Supervisor Professor Anton Middelberg
Dr Annette Dexter
Dr Robert Falconer
Total pages 82
Total colour pages 20
Total black and white pages 62
Subjects 06 Biological Sciences
Abstract/Summary Abstract Peptide surfactants developed in the Centre for Biomolecular Engineering at The University of Queensland are engineered to combine the advantages of traditional surfactants with biodegradability, biocompatibility, formation of a mechanically strong interfacial cohesive network, and reversible stimuli-responsiveness. In this project, the potential of peptide-stabilised emulsions as delivery systems for small interfering RNA (siRNA) was explored. In recent years, the potential of siRNA as a new class of therapeutics has attracted great attention. The ubiquitous nature of RNA interference (RNAi) implies that siRNA can be used to silence any disease-causing gene to treat any disease. The hurdle that needs to be overcome to turn siRNA therapy into clinical reality is its delivery into the cytosol, where gene silencing by siRNA occurs. Although numerous systems have been developed for the delivery of siRNA, safety and efficiency are major concerns associated with current formulations. Therefore this project aimed to prepare a stable peptide emulsion formulation and to conduct initial tests of its ability to deliver siRNA in vitro. The human tumour suppressor gene p53 and the human breast cancer MCF-7 cell line were used as the model gene and model cell line, respectively. The commercially available lipid-based transfection reagent Lipofectamine™ 2000 was used as the benchmark control. Sonication and membrane extrusion were used to formulate emulsions with droplet size (d=120 nm) suitable for intravenous applications using peptide surfactant in the presence of Zn(II). Although these peptide emulsions are stable by themselves and in bovine serum, emulsion stability was found to be strongly affected by the presence of salt, EDTA, and proteins. The instability of AM1 emulsion in cell culture media has been a concern when it was subjected to in vitro cell culture tests. AM1-stabilised emulsion droplets were shown to be taken up by MCF-7 cells. However, siRNA when coupled with AM1 emulsion was not delivered into cells. Cytotoxicity studies showed that peptide surfactants did not exhibit high-level toxicity to CHO cells at the tested concentrations (0.25-2 mg mL-1). AM1 peptide-stabilised emulsions were mildly toxic to CHO cells but no toxicity was observed with MCF-7 cells. Future work could include evaluation of peptide emulsion-siRNA complex formation, and exploring the effects of different cell culture media compositions on emulsion stability and their relation to cytotoxicity.
Keyword Peptide, surfactant, emulsion, siRNA, drug delivery, p53, MCF-7, formulation,cytotoxicity, Lipofectamine™ 2000, transfection.
Additional Notes colour pages: 1, 14, 32-33, 39-41, 44-46, 48, 55-56, 58-59, 61-65

Citation counts: Google Scholar Search Google Scholar
Created: Thu, 25 Mar 2010, 18:34:06 EST by Ms Kaiyin Hu on behalf of Library - Information Access Service