A Selberg integral for the Lie algebra An

Warnaar, S. Ole (2009) A Selberg integral for the Lie algebra An. Acta Mathematica, 203 2: 269-304. doi:10.1007/s11511-009-0043-x

Attached Files (Some files may be inaccessible until you login with your UQ eSpace credentials)
Name Description MIMEType Size Downloads

Author Warnaar, S. Ole
Title A Selberg integral for the Lie algebra An
Formatted title
A Selberg integral for the Lie algebra An
Journal name Acta Mathematica   Check publisher's open access policy
ISSN 0001-5962
Publication date 2009-12
Sub-type Article (original research)
DOI 10.1007/s11511-009-0043-x
Volume 203
Issue 2
Start page 269
End page 304
Total pages 36
Editor Anders Bjorner
Place of publication Dordrecht, Netherlands
Publisher Springer
Collection year 2010
Language eng
Subject 970101 Expanding Knowledge in the Mathematical Sciences
010101 Algebra and Number Theory
010104 Combinatorics and Discrete Mathematics (excl. Physical Combinatorics)
Formatted abstract
A new q-binomial theorem for Macdonald polynomials is employed to prove an A n analogue of the celebrated Selberg integral. This confirms the g=An case of a conjecture by Mukhin and Varchenko concerning the existence of a Selberg integral for every simple Lie algebra g.
Keyword Beta integrals
Selberg integrals
Macdonald polynomials
Q-Index Code C1
Q-Index Status Confirmed Code
Institutional Status UQ

Document type: Journal Article
Sub-type: Article (original research)
Collections: School of Mathematics and Physics
2010 Higher Education Research Data Collection
ERA 2012 Admin Only
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 10 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 12 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Wed, 24 Mar 2010, 11:24:09 EST by Kay Mackie on behalf of School of Mathematics & Physics