Universal spectral parameter-dependent Lax operators for the Drinfeld double of the dihedral group D-3

Dancer, K. A. and Links, J. (2009) Universal spectral parameter-dependent Lax operators for the Drinfeld double of the dihedral group D-3. Journal of Physics A - Mathematical and Theoretical, 42 4: 134-7. doi:10.1088/1751-8113/42/4/042002


Author Dancer, K. A.
Links, J.
Title Universal spectral parameter-dependent Lax operators for the Drinfeld double of the dihedral group D-3
Formatted title
Universal spectral parameter-dependent Lax operators for the Drinfeld double of the dihedral group D3
Journal name Journal of Physics A - Mathematical and Theoretical   Check publisher's open access policy
ISSN 1751-8113
1751-8121
Publication date 2009
Year available 2008
Sub-type Article (original research)
DOI 10.1088/1751-8113/42/4/042002
Volume 42
Issue 4
Start page 134
End page 7
Total pages 7
Editor Murray T. Batchelor
Place of publication Bristol, United Kingdom
Publisher Institute of Physics Publishing
Language eng
Subject 970101 Expanding Knowledge in the Mathematical Sciences
010501 Algebraic Structures in Mathematical Physics
C1
Formatted abstract
Two universal spectral parameter-dependent Lax operators are presented in terms of the elements of the Drinfeld double D(D3) of the dihedral group D3.  Applying representations of D(D3) to these yields matrix solutions of the Yang–Baxter equation with a spectral parameter.
Keyword Yang-Baxter equation
Drinfield double D(D3)
Lax operators
Dihedral group D3
Matrix solutions
Q-Index Code C1
Q-Index Status Provisional Code
Additional Notes Article number: 042002

Document type: Journal Article
Sub-type: Article (original research)
Collections: School of Mathematics and Physics
ERA 2012 Admin Only
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 2 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 2 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Thu, 03 Sep 2009, 09:02:06 EST by Mr Andrew Martlew on behalf of School of Mathematics & Physics