金属合金等温相变的体激活能及相变机制 I. 钢的中温(贝氏体)等温相变. Overall activation energy of isothermal transformation in metal alloy and its mechanism: I. Medium temperature (bainite) isothermal transformation in steels

康沫狂 Kang, Mokuang, 张明星 Zhang, Mingxing, 刘峰 Liu, Feng and 朱明 Zhu, Ming (2009) 金属合金等温相变的体激活能及相变机制 I. 钢的中温(贝氏体)等温相变. Overall activation energy of isothermal transformation in metal alloy and its mechanism: I. Medium temperature (bainite) isothermal transformation in steels. 金属学报, 45 1: 25-31.

Attached Files (Some files may be inaccessible until you login with your UQ eSpace credentials)
Name Description MIMEType Size Downloads
Author 康沫狂 Kang, Mokuang
张明星 Zhang, Mingxing
刘峰 Liu, Feng
朱明 Zhu, Ming
Title 金属合金等温相变的体激活能及相变机制 I. 钢的中温(贝氏体)等温相变. Overall activation energy of isothermal transformation in metal alloy and its mechanism: I. Medium temperature (bainite) isothermal transformation in steels
Translated title Overall activation energy of isothermal transformation in metal alloy and its mechanism: I. Medium temperature (bainite) isothermal transformation in steels
Language of Title chi
eng
Journal name 金属学报   Check publisher's open access policy
Translated journal name Acta Metallurgica Sinica
Language of Journal Name chi
eng
ISSN 0412-1961
Publication date 2009-01
Year available 2009
Sub-type Article (original research)
Volume 45
Issue 1
Start page 25
End page 31
Total pages 7
Editor K. Hun
Place of publication Beijing, China
Publisher Kexue Chubanshe
Collection year 2010
Language chi
eng
Subject C1
8612 Fabricated Metal Products
0912 Materials Engineering
091207 Metals and Alloy Materials
Formatted abstract
钢的中温(贝氏体)等温处理获得的上、下贝氏体和粒状组织, 都具有各自独立的C曲线;在转变初期均能获得单一的组织, 而在转变的中、后期通常可获得相邻两组织的复合体. 必须用单一组织和Arrhenius关系求相变产物的体激活能. 将体激活能、组织形貌和体自由能曲线相结合可诠释下述论点: 下或上贝氏体是碳原子扩散控制下在奥氏体中的贫碳或极贫碳区, 进行“军队型”(队列式)原子无扩散马氏体样切变相变; 而粒状组织是碳原子扩散控制下在奥氏体中的最贫碳区, 发生“平民型”(非队列式)原子无扩散界面控制相变.

Upper bainite, lower bainite and granular structure in isothermally treated steels have all themselves C curves. A single microstructure is always produced in the primary stage, whereas the nearby two-microstructure complex is usually produced in the medium or final stage of the transformation. Only a single microstructure and Arrhenius equation must be used to deduce the overall activation energy for the transformation product. A combination of overall activation energy, morphology and free energy curve can explain the bainitic transformation mechanism and granular structure formation mechanism. The former follows military atom diffusionless martensite-like shear, which occurred in carbon-depleted region controlled by carbon atom diffusion in austenite, and the latter results from civilian atom diffusionless interface control transformation, which occurred in the most carbon--depleted region controlled by carbon atom diffusion in austenite.
Keyword Bainite transformation
Austenite
Q-Index Code C1
Q-Index Status Confirmed Code
Institutional Status UQ
Additional Notes Abstract only in English.

Document type: Journal Article
Sub-type: Article (original research)
Collections: 2010 Higher Education Research Data Collection
School of Mechanical & Mining Engineering Publications
ERA 2012 Admin Only
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 2 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 0 times in Scopus Article
Google Scholar Search Google Scholar
Created: Thu, 03 Sep 2009, 08:38:09 EST by Mr Andrew Martlew on behalf of Materials