Impact of micropredatory gnathiid isopods on young coral reef fishes

Grutter, A. S., Pickering, J., McCallum, H. I. and McCormick, M. I. (2008) Impact of micropredatory gnathiid isopods on young coral reef fishes. Coral Reefs, 27 3: 655-661. doi:10.1007/s00338-008-0377-4


Author Grutter, A. S.
Pickering, J.
McCallum, H. I.
McCormick, M. I.
Title Impact of micropredatory gnathiid isopods on young coral reef fishes
Journal name Coral Reefs   Check publisher's open access policy
ISSN 0722-4028
Publication date 2008-04
Sub-type Article (original research)
DOI 10.1007/s00338-008-0377-4
Volume 27
Issue 3
Start page 655
End page 661
Total pages 7
Place of publication Germany
Publisher Springer
Collection year 2009
Language eng
Subject C1
969999 Environment not elsewhere classified
060205 Marine and Estuarine Ecology (incl. Marine Ichthyology)
0502 Environmental Science and Management
Abstract The ecological role of parasites in the early life-history stages of coral reef fish, and whether this varies between fish with and without a pelagic phase, was investigated. The susceptibility to, and effect of reef-based micropredatory gnathiid isopods on larval, recently settled, and juvenile fishes was tested using two damselfishes (Pomacentridae): Neopomacentrus azysron, which has pelagic larvae, and Acanthochromis polyacanthus, which does not. When larval and recently settled stages of N. azysron and very young A. polyacanthus juveniles (smaller than larval N. azysron) were exposed to one or three gnathiids, the proportion of infections did not vary significantly among the three host types or between the number of gnathiids to which the fish were exposed. The overall infection was 35%. Mortality, however, differed among the three gnathiid-exposed host types with most deaths occurring in larval N. azysron; no mortalities occurred for recently settled N. azysron exposed to one or three gnathiids, and A. polyacanthus exposed to one gnathiid. Mortality did not differ significantly between larval N. azysron and A. polyacanthus juveniles, failing to provide support for the hypothesis that reef-based A. polyacanthus juveniles are better adapted to gnathiid attack than fish with a pelagic phase. The study suggests that settling on the reef exposes young fish to potentially deadly micropredators. This supports the idea that the pelagic phase may allow young fish to avoid reef-based parasites.
Formatted abstract
The ecological role of parasites in the early life-history stages of coral reef fish, and whether this varies between fish with and without a pelagic phase, was investigated. The susceptibility to, and effect of reef-based micropredatory gnathiid isopods on larval, recently settled, and juvenile fishes was tested using two damselfishes (Pomacentridae): Neopomacentrus azysron, which has pelagic larvae, and Acanthochromis polyacanthus, which does not. When larval and recently settled stages of N. azysron and very young A. polyacanthus juveniles (smaller than larval N. azysron) were exposed to one or three gnathiids, the proportion of infections did not vary significantly among the three host types or between the number of gnathiids to which the fish were exposed. The overall infection was 35%. Mortality, however, differed among the three gnathiid-exposed host types with most deaths occurring in larval N. azysron; no mortalities occurred for recently settled N. azysron exposed to one or three gnathiids, and A. polyacanthus exposed to one gnathiid. Mortality did not differ significantly between larval N. azysron and A. polyacanthus juveniles, failing to provide support for the hypothesis that reef-based A. polyacanthus juveniles are better adapted to gnathiid attack than fish with a pelagic phase. The study suggests that settling on the reef exposes young fish to potentially deadly micropredators. This supports the idea that the pelagic phase may allow young fish to avoid reef-based parasites.
Keyword Coral reef fish larvae
Dispersal
Gnathiidae
Survival
Migration
Q-Index Code C1
Q-Index Status Confirmed Code

Document type: Journal Article
Sub-type: Article (original research)
Collections: 2009 Higher Education Research Data Collection
School of Biological Sciences Publications
Ecology Centre Publications
 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 21 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 23 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Wed, 26 Nov 2008, 17:18:52 EST by Gail Walter on behalf of School of Biological Sciences