Rehabilitation of exterior RC beam-column joints using web-bonded FRP sheets

Mahini, Seyed Saeid (2005). Rehabilitation of exterior RC beam-column joints using web-bonded FRP sheets PhD Thesis, School of Engineering, University of Queensland.

Attached Files (Some files may be inaccessible until you login with your UQ eSpace credentials)
Name Description MIMEType Size Downloads
Mahini_Full_thesis.pdf Mahini_Full text application/pdf 5.74MB 27
Author Mahini, Seyed Saeid
Thesis Title Rehabilitation of exterior RC beam-column joints using web-bonded FRP sheets
School, Centre or Institute School of Engineering
Institution University of Queensland
Publication date 2005
Thesis type PhD Thesis
Supervisor Dr Hamid R. Ronagh
A/Prof Paul Dux
Total pages 343
Language eng
Subjects 290804 Construction Engineering
Formatted abstract

In a Reinforced Concrete (RC) building subjected to lateral loads such as earthquake and wind pressure, the beam to column joints constitute one of the critical regions, especially the exterior ones, and they must be designed and detailed to dissipate large amounts of energy without a significant loss of, strength, stiffness and ductility. This would be achieved when the beam-column joints are designed in such a way that the plastic hinges form at a distance away from the column face and the joint region remain elastic. In existing frames, an easy and practical way to implement this behaviour following the accepted design philosophy of the strong-column weak-beam concept is the use a Fibre Reinforced Plastic (FRP) retrofitting system. In the case of damaged buildings, this can be achieved through a FRP repairing system.


In the experimental part of this study, seven scaled down exterior subassemblies were tested under monotonic or cyclic loads. All specimens were designed following the strong-column weak-beam principal. The three categories selected for this investigation included the FRP-repaired and FRP-retrofitted specimens under monotonic loads and FRP-retrofitted specimen under cyclic loads. All repairing/retrofitting was performed using a new technique called a web-bonded FRP system, which was developed for the first time in the current study. On the basis of test results, it was concluded that the FRP repairing/retrofitting system can restore/upgrade the integrity of the joint, keeping/upgrading its strength, stiffness and ductility, and shifting the plastic hinges from the column face toward the beam in such a way that the joint remains elastic.


In the analytical part of this study, a closed-form solution was developed in order to predict the physical behaviour of the repaired/retrofitted specimens. Firstly, an analytical model was developed to calculate the ultimate moment capacity of the webbonded FRP sections considering two failure modes, FRP rupture and tension failure, followed by an extended formulation for estimating the beam-tip displacement. Based on the analytical model and the extended formulation, failure mechanisms of the test specimens were implemented into a computer program to facilitate the calculations. All seven subassemblies were analysed using this program, and the results were found to be in good agreement with those obtained from experimental study. Design curves were also developed to be used by practicing engineers.


In the numerical part of this study, all specimens were analysed by a nonlinear finite element method using ANSYS software. Numerical analysis was performed for three purposes: to calculate the first yield load of the specimens in order to manage the tests; to investigate the ability of the web-bonded FRP system to relocate the plastic hinge from the column face toward the beam; and to calibrate and confirm the results obtained from the experiments. It was concluded that numerical analysis using ANSYS could be considered as a practical tool in the design of the web-bonded FRP beam-column joints.

Keyword Reinforced concrete construction
Concrete beams
Joints (Engineering)
Fiber-reinforced plastics
strong-column weak-beam principal
Exterior Beam-Column Joints
Moment resisting building frame structure
Measured beam-tip displacement
FRP rupture
Non-linear Finite Element (FE)
Effective Moment of Inertia

Citation counts: Google Scholar Search Google Scholar
Created: Fri, 21 Nov 2008, 16:53:03 EST