Effect of multiple transverse modes in self-mixing sensors based on vertical-cavity surface-emitting lasers

Tucker, John R., Rakic, Aleksandar D., O'Brien, Christopher J. and Zvyagin, Andrei V. (2007) Effect of multiple transverse modes in self-mixing sensors based on vertical-cavity surface-emitting lasers. Applied Optics, 46 4: 611-619. doi:10.1364/AO.46.000611

Attached Files (Some files may be inaccessible until you login with your UQ eSpace credentials)
Name Description MIMEType Size Downloads
AO_multimode_eprints.pdf Post pring application/pdf 275.38KB 708

Author Tucker, John R.
Rakic, Aleksandar D.
O'Brien, Christopher J.
Zvyagin, Andrei V.
Title Effect of multiple transverse modes in self-mixing sensors based on vertical-cavity surface-emitting lasers
Journal name Applied Optics   Check publisher's open access policy
ISSN 0003-6935
1539-4522
Publication date 2007-02-01
Sub-type Article (original research)
DOI 10.1364/AO.46.000611
Open Access Status File (Author Post-print)
Volume 46
Issue 4
Start page 611
End page 619
Total pages 9
Editor Wyant, J.
Place of publication Washington, DC, United States
Publisher Optical Society of America
Collection year 2008
Language eng
Subject 240401 Optics and Opto-electronic Physics
290901 Electrical Engineering
299904 Engineering/Technology Instrumentation
291599 Biomedical Engineering not elsewhere classified
700399 Communication services not elsewhere classified
C1
Abstract We investigate the effect of coexisting transverse modes on the operation of self-mixing sensors based on vertical-cavity surface-emitting lasers (VCSELs). The effect of multiple transverse modes on the measurement of displacement and distance were examined by simulation and in laboratory experiment. The simulation model shows that the periodic change in the shape and magnitude of the self-mixing signal with modulation current can be properly explained by the different frequency-modulation coefficients of the respective transverse modes in VCSELs. The simulation results are in excellent agreement with measurements performed on single-mode and multimode VCSELs and on self-mixing sensors based on these VCSELs.
Keyword Interferometry
Vertical cavity surface emitting lasers
Laser range finder
Laser sensors
Injection-laser
Doppler Velocimetry
Semiconductor-laser
External Optical Feedback
References 1. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347-355 (1980). 2. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 480-489 (1995). 3. K. Petermann, Laser diode modulation and noise (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991). 4. S. Donati, Electro-Optical Instrumentation (Prentice Hall, Upper Saddle River, New Jersey, 2004). 5. D. M. Kane and K. A. Shore, Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers (John Wiley & Sons, Ltd, Chichester, West Sussex, England, 2005). 6. G. P. Agrawal, "Line narrowing in a single-mode injection laser due to external optical feedback," IEEE J. Quantum Electron. 20, 468-471 (1984). 7. S. Donati, G. Giuliani, and S. Merlo, "Laser diode feedback interferometer for measurement of displacements without ambiguity," IEEE J. Quantum Electron. 31, 113- 119 (1995). 8. G. Beheim and K. Fritsch, "Range finding using frequency-modulated laser diode," Appl. Opt. 25, 1439-1442 (1986). 9. J. H. Churnside, "Laser Doppler velocimetry by modulating a CO2 laser with backscattered light," Appl. Opt. 23, 61-66 (1984). 10. G. Giuliani, S. Donati, M. Passerini, and T. Bosch, "Angle measurement by injection detection in a laser diode," Opt. Eng. 40, 95-99 (2001). 11. F. F. M. de Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graaff, and A. C. M. Dassel, "Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue," Appl. Opt. 31, 5844-5851 (1992). 12. K. Mito, H. Ikeda, M. Sumi, and S. Shinohara, "Self-mixing effect on the semiconductor laser Doppler method for blood flow measurement," Med. Biol. Eng. Comput. 31, 308- 310 (1993). 13. T. Bosch, N. Servagent, R. Chellali, and M. Lescure, "Three-dimensional object construction using a self-mixing type scanning laser range finder," IEEE Trans. Instrum. Meas. 47, 1326-1329 (1998). 14. E. Gagnon and J. F. Rivest, "Laser range imaging using the self-mixing effect in a laser diode," IEEE Trans. Instrum. Meas. 48, 693-699 (1999). 15. Y. Katagiri and S. Hara, "Scanning-probe microscope using an ultrasmall coupled-cavity laser distortion sensor based on mechanical negative-feedback stabilization," Meas. Sci. Technol. 9, 1441-1445 (1998). 16. G. Giuliani and M. Norgia, “Laser diode linewidth measurement by means of self-mixing interferometry,” IEEE Photon. Technol. Lett. 12, 1028-1030 (2000). 17. Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004). 18. P. J. de Groot, "Range-dependent optical feedback effects on the multimode spectrum of laser diodes," J. Mod. Opt. 37, 1199-1214 (1990). 19. H. Kakiuchida and J. Ohtsubo, "Characteristics of a semiconductor laser with external feedback," IEEE J. Quantum Electron. 30, 2087-2097 (1994). 20. Y. Yu and J. Yao, "View for the development of theory on the self-mixing interference and general model of the displacement measurement," Advanced Materials and Devices for Sensing and Imaging, J. Yao and Y. Ishii, eds., Proc. SPIE 4919, 235-241 (2002). 21. L. Lv, H. Gui, J. Xie, T. Zhao, X. Chen, A. Wang, F. Li, D. He, J. Xu, and H. Ming, "Effect of external cavity length on self-mixing signals in a multilongitudinal-mode Fabry-Perot laser diode," Appl. Opt. 44, 568-71 (2005). 22. J. R. Tucker, Y. L. Leng, and A. D. Rakic, "Laser range finding using the self-mixing effect in a vertical-cavity surface-emitting laser," in 2002 Conference on Optoelectronic and Microelectronic Materials and Devices Proceedings (Institute of Electrical and Electronic Engineers, Piscataway, New Jersey, 2002), pp. 583-586. 23. K. Bertling, J. R. Tucker, and A. D. Rakic, "Optimum injection current waveform for a laser rangefinder based on the self-mixing effect," Photonics: Design, Technology, and Packaging, C. Jagadish, K. D. Choquette, B. J. Eggleton, B. D. Nener and K. A. Nugent, eds., Proc. SPIE 5277, 334-345 (2004). 24. C. Gorecki and D. Heinis, "A miniaturized SNOM sensor based on the optical feedback inside the VCSEL cavity," Optical Micro- and Nanometrology in Manufacturing Technology, C. Gorecki and A. K. Asundi, eds., Proc. SPIE 5458, 183-187 (2004). 25. T. Maier and E. Gornik, "Integrated sensor chip for interferometric displacement measurements," Electron. Lett. 36, 792-794 (2000). 26. F. Vogel and B. Toulouse, "A low-cost medium-resolution rangefinder based on the selfmixing effect in a VCSEL," IEEE Trans. Instrum. Meas. 54, 428-431 (2005). 27. E. M. Strzelecka, G. B. Thompson, G. D. Robinson, M. G. Peters, B. J. Thibeault, M. Mondry, V. Jayaraman, F. H. Peters, and L. A. Coldren, "Monolithic integration of refractive lenses with vertical cavity lasers and detectors for optical interconnections," Optoelectronic Packaging, M. R. Feldman and Y-C. Lee, eds., Proc. SPIE 2691, 43-53 (1996). 28. R. Wang, A. D. Rakic, and M. L. Majewski, "Design of microchannel free-space optical interconnects based on vertical-cavity surface-emitting laser arrays," Appl. Opt. 41, 3469-3478 (2002) 29. F.-C. F. Tsai, C. J. O'Brien, N. S. Petrovic, and A. D. Rakic, "Analysis of optical channel cross talk for free-space optical interconnects in the presence of higher-order transverse modes," Appl. Opt. 44, 6380-6387, (2005). 30. P. J. de Groot, G. M. Gallatin, and S. H. Macomber, "Ranging and velocimetry signal generation in a backscatter-modulated laser diode," Appl. Opt. 27, 4475-4480 (1988). 31. M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, "Laser Doppler velocimeter based on the self-mixing effect in a fiber-couple semiconductor laser: theory," Appl. Opt. 31, 3401-3408 (1992). 32. R. Jager, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl, and K. J. Ebeling, "57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs," Electron. Lett. 33, 330-331 (1997). 33. K. L. Lear, K. D. Choquette, R. P. Schneider, Jr., S. P. Kilcoyne, and K. M. Geib, "Selectively oxidised vertical cavity surface emitting lasers with 50% power conversion efficiency," Electron. Lett. 31, 208-209, 1995. 34. M. Grabherr, R. J. Jager, R. Michalzik, B. Weigl, G. Reiner, and K. J. Ebeling, "Efficient single-mode oxide-confined GaAs VCSEL's emitting in the 850-nm wavelength regime," IEEE Photon. Technol. Lett. 9, 1304-1306 (1997). 35. R. Michalzik, P. Schnitzer, U. Fiedler, D. Wiedenmann, and K. J. Ebeling, "High-bit-rate data transmission with short-wavelength oxidized VCSEL's, toward bias-free operation," IEEE J. Sel. Top. Quantum Electron. 3, 396-404 (1997). 36. T. H. Oh, M. R. McDaniel, D. L. Huffaker, and D. G. Deppe, "Cavity-induced antiguiding in a selectively oxidized vertical-cavity surface-emitting laser," IEEE Photon. Technol. Lett. 10, 12-14 (1998). 37. T. H. Oh, O. B. Shchekin, and D. G. Deppe, "Single-mode operation in an antiguided vertical-cavity surface-emitting laser using a low-temperature grown AlGaAs dielectric aperture," IEEE Photon. Technol. Lett. 10, 1064-1066 (1998). 38. S. F. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers (John Wiley & Sons, Inc., Hoboken, New Jersey, 2003). 39. R. Michalzik and K. J. Ebeling, "Operating principles of VCSELs," in Vertical-Cavity Surface-Emitting Laser Devices, H. E. Li and K. Iga, eds. (Springer, Berlin, Germany, 2003), pp. 53-98. 40. R. Michalzik and K. J. Ebeling, "Generalized BV diagrams for higher order transverse modes in planar vertical-cavity laser diodes," IEEE J. Quantum Electron. 31, 1371-1379 (1995). 41. G. Giuliani and S. Donati, "Laser interferometry," in Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers, D. M. Kane and K. A. Shore, eds. (John Wiley & Sons, Ltd, Chichester, West Sussex, England, 2005), pp. 217-256. 42. J. J. Dudley, D. L. Crawford, and J. E. Bowers, "Temperature dependence of the properties of DBR mirrors used in surface normal optoelectronic devices," IEEE Photon. Technol. Lett. 4, 311-314 (1992). 43. W. Nakwaski and R. P. Sarzala, "Transverse modes in gain-guided vertical-cavity surface-emitting lasers," Opt. Commun. 148, 63-69 (1998). 44. C. Degen, I. Fischer, and W. Elsasser, "Transverse modes in oxide confined VCSELs: influence of pump profile, spatial hole burning, and thermal effects," Opt. Exp. 5, 38-47 (1999).
Q-Index Code C1
Q-Index Status Confirmed Code
Institutional Status UQ

 
Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 14 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 22 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Sun, 15 Apr 2007, 11:36:15 EST by Mr John Tucker on behalf of School of Engineering