A mechanism for the poisoning effect of silicon on the grain refinement of Al-Si alloys

Qiu, D., Taylor, J. A., Zhang, M.-X. and Kelly, P. M. (2007) A mechanism for the poisoning effect of silicon on the grain refinement of Al-Si alloys. Acta Materialia, 55 4: 1447-1456. doi:10.1016/j.actamat.2006.09.046

Author Qiu, D.
Taylor, J. A.
Zhang, M.-X.
Kelly, P. M.
Title A mechanism for the poisoning effect of silicon on the grain refinement of Al-Si alloys
Journal name Acta Materialia   Check publisher's open access policy
ISSN 1359-6454
Publication date 2007
Year available 2007
Sub-type Article (original research)
DOI 10.1016/j.actamat.2006.09.046
Volume 55
Issue 4
Start page 1447
End page 1456
Total pages 10
Editor Mahajan, S.
Place of publication Oxford
Publisher Pergamon-elsevier Science Ltd
Collection year 2008
Language eng
Subject 291403 Alloy Materials
670802 Aluminium
Abstract The poisoning effect of excess Si solute on the grain-refining potency of Al-Ti-B grain refiners in Al-Si casting alloys has been studied in a crystallographic investigation. The edge-to-edge matching model was used for investigating and comparing the possible poisoning effects of several binary and ternary intermetallic compounds containing Si and Ti. The results show that the poisoning effect is probably due to the formation of a Ti5Si3 coating on the surface of TiAl3, because the Ti5Si3 phase has a much better crystallographic matching with TiAl3 than it does with the Al matrix. However, TiB2 particles appear to survive because an excessively large misfit prevents the Ti5Si3 phase from forming on the surface of TiB2. The implications of this proposed mechanism are discussed in the light of current practical casting solutions and the continuing debate on the grain refinement mechanism. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Keyword Materials Science, Multidisciplinary
Metallurgy & Metallurgical Engineering
aluminium alloys
grain refining
edge-to-edge matching
Edge Matching Model
Orientation Relationships
Heterogeneous Nucleation
Part Ii
References [1] McCartney DG. Int Mater Rev 1989;34:247. [2] Easton M, St. John DH. Metall Mater Trans A 1999;30A:1625. [3] Murty BS, Kori SA, Chakraborty M. Int Mater Rev 2002;47:3. [4] Cibula A. J Inst Metall 1949–1950;76:321. [5] Johnsson M, Backerud L, Sigworth GK. Metall Trans A 1993;24A:481. [6] Maxwell I, Hellawell A. Acta Metall 1975;23:229. [7] Mohanty PS, Gruzleski JE. Acta Metall Mater 1995;43:2001. [8] Schumacher P, Greer AL, Worth J, Evans PV, Kearns MA, Fisher P,et al. Mater Sci Technol 1998;14:394. [9] Birch MEJ, Cowell AJJ. In: Proc Conf ‘Solidification processing 1987, The Institute of Metals, London, 1988, 149. [10] Spittle JA, Sadli S. Cast Metal 1995;7:247. [11] Spittle JA, Keeble JM, Meshhedani AL. TMS Light Metals 1991:795. [12] Kori SA, Murty BS, Chakraborty M. Mater Sci Technol 1999;15:986. [13] Vinod Kumar GS, Murty BS, Chakraborty M. Ind Foundry J 2003;49:23. [14] Kori SA, Auradi V, Murty BS, Chakraborty M. Mater Forum 2005;29:387. [15] Kori SA, Murty BS, Chakraborty BS. Mater Sci Eng A 2000;283:93. [16] Lu HT, Wang LC, Wang SK. J China Foundryman’s Assoc 1981;29:10. [17] Sigworth GK. Metall Trans A 1984;15A:277. [18] Birch MEJ, Fisher P. Aluminum Technology 1986. London: The Institute of Metals; 1986. 117. [19] Arsenault RJ. Composites 1994;25:540. [20] Wang L, Arsenault RJ. Metall Trans A 1991;22A:3013. [21] Schumacher P, McKay BJ. J Non-Crystal Solids 2003;317:123. [22] Sigworth GK, Guzowaski MM. AFS Trans 1985;93:907. [23] Rao AA, Murty BS, Chakraborty M. Metall Mater Trans A 1995;27A:791. [24] Rao AA, Murty BS, Chakraborty M. Int J Cast Metal Res 1996;9:125. [25] Kelly PM, Zhang M-X. Mater Forum 1999;23:41. [26] Zhang M-X, Kelly PM. Scripta Mater 2005;52:963. [27] Kelly PM, Zhang M-X. Metall Mater Trans A 2006;37A:833. [28] Zhang M-X, Kelly PM. Acta Mater 2005;53:1073. [29] Zhang M-X, Kelly PM. Acta Mater 2005;53:1085. [30] Zhang M-X, Kelly PM, Qian M, Taylor JA. Acta Mater 2005;53:3261. [31] Zhang M-X, Kelly PM, Easton MA, Taylor JA. Acta Mater 2005;53:1427. [32] Shiflet GJ, van der Merwe JH. Metall Mater Trans A 1994;25A:1895. [33] Zhang W-Z, Purdy GR. Phil Mag 1993;68:279. [34] Zhang W-Z, Ye F, Zhang C, Qi Y, Fang H-S. Acta Mater 2000;48:2209. [35] Murray JL. Phase diagrams of binary titanium alloys. Metal Parks OH: ASM International; 1987. 289. [36] Beyers R, Sinclair R. J Appl Phys 1985;57:5240. [37] Nathan M. J Appl Phys 1988;63:5534. [38] Kato H, Nakamura Y. Thin Solid Films 1976;34:135. [39] Villars P, Prince A, Okamoto H. Handbook of ternary alloy phase diagrams. Metal Parks OH: ASM International; 1995. 4315. [40] 2002 JCPDS – International Center for Diffraction Data, PCPDFWIN v. 2.3.
Q-Index Code C1

Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 46 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 57 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Mon, 18 Feb 2008, 16:26:33 EST