Hydrothermal Stability of Modified Silica Membranes for Gas Separation

Giessler, S., Duke, M. C., Diniz da Costa, J. C. and Lu, G. Q. (2001). Hydrothermal Stability of Modified Silica Membranes for Gas Separation. In: D. G. Wood, 6th World Congress of Chemical Engineering, Melbourne, Australia, (1-10). 23-27 September, 2001.

Attached Files (Some files may be inaccessible until you login with your UQ eSpace credentials)
Name Description MIMEType Size Downloads
giessler.pdf Conference paper (author version) application/pdf 119.49KB 612
Author Giessler, S.
Duke, M. C.
Diniz da Costa, J. C.
Lu, G. Q.
Title of paper Hydrothermal Stability of Modified Silica Membranes for Gas Separation
Conference name 6th World Congress of Chemical Engineering
Conference location Melbourne, Australia
Conference dates 23-27 September, 2001
Place of Publication Melbourne, VIC, Australia
Publisher I. E. Aust
Publication Year 2001
Sub-type Fully published paper
Editor D. G. Wood
Volume Proceedings CDROM Paper 239
Start page 1
End page 10
Total pages 10
Language eng
Abstract/Summary A new class of hybrid molecular sieve silica (MSS) membranes is developed and tested against standard and organic templated membranes. The hybrid membrane is synthesized by the standard sol-gel process, integrating a template (methyltriethoxysilane - MTES) and a C6 surfactant (triethylhexylammonium bromide) into the silica film matrix. After hydro treatment under a relative humidity of 96% for 50h, the hybrid membrane shows no changes in its gas separation capabilities or energy of mobility. The structural characteristics and integrity of the hybrid membrane are retained due to a high concentration of organophilic functional groups and alkoxides observed using 29 Si NMR. In contrast, the structural integrity of the membranes prepared with non-templated films deteriorated during the hydro treatment due to a large percentage of silanol groups (Si-OH) which react with water. The hybrid membranes underwent a decrease in the H2/CO2 selectivity of only 1% whereas for the non-templated membrane a 21% decrease was observed. The transport mechanism of the hybrid membranes is activated as permeation increased with temperature. The activation energy for the permeation of H2 is positive while negative for CO2. The H2 permeation obtained was 3x 10 -8 mol.m -2 .s -1 .Pa -1 and permselectivities for H2/CO2 and H2/N2 varied between 1-7 and 31-34, respectively.
Subjects 290603 Membrane and Separation Technologies
250200 Inorganic Chemistry
Keyword molecular sieve silica membranes
MSS membranes
hybrid
References 1 Giessler, S., Diniz da Costa, J. C., & Lu, G. Q. (2001), ‘Hydrophobicity of Templated Silica Xerogels for Molecular Sieving Applications’, submitted to Journal of Nanoscience and Nanotechnology 2 De Lange, R. S. A., Keizer, K., & Burggraaf, A. J. (1995), ‘Analysis and theory of gas transport in microporous sol-gel derived ceramic membranes’, Journal of Membrane Science, 104, 81-100 3 Nair B. N., Yamaguchi, T., Okubo, T., Suematsu, H., Kaizer, K., & Nakao, S. I. (1997), ‘Sol-gel synthesis of molecular sieving silica membranes’, Journal of Membrane Science, 135, 237-243. 4 De Vos, R. M. , & Verweij, H. (1998), ‘Improved performance of silica membranes for gas separation’, Journal of Membrane Science, 143, 37-51. 5 Raman, N. K., & Brinker, C. J. (1995), ‘Organic template approach to molecular sieving silica membranes’, Journal of Membrane Science, 105, 273-279. 6 Tsai, C., Tam, S., Lu, Y., & Brinker, C. J. (2000), ‘Dual-layer asymetric microporous silica membranes’, Journal of Membrane Science, 169, 255-268 7 Fotou, G. P., Lin, Y. S., & Pratsinis, S. E. (1995), ‘Hydrothermal stability of pure and modified microporous silica membranes’, Journal of Materials Science, 30, 2803-2808 8 De Vos, R., Maier, W. F., & Verweij, H. (1999), ‘Hydrophobic silica membranes for gas separation’, Journal of Membrane Science, 158, 277-288 9 Kusakabe, K., Sakamoto, S., Saie, T., & Morooka, S. (1999), ‘Pore structure of silica membranes formed by a sol-gel technique using tetraethoxysilane and alkyltriethoxysilanes’, Separation and Purification Technology, 16, 139 10 Barrer, R.M. (1990), ‘Porous Crystal membranes’, Journal of Chemical Society Faraday Transaction, 86, 1123-1130 11 Golden, T.C., &Sircar, S. (1994), ‘Gas Adsorption on Silicalite’, Journal of Colloid and Interface Science, 162, 183-188 12 Dunne, J. et.al. (1996), Heats of adsorption of polar and non-polar gases in homogeneous and heterogeneous adsorbents, in M.D. LeVan, ‘Fundamentals of Adsorption’, Kluwer Academic Publishers, Boston, 277-284 13 Choudhary, V. R., & Mayadevi, S. (1996), ‘Adsorption of methane, ethane, ethylene and carbon dioxide on Silicalite-1’, Zeolithes, 17, 501-507 14 Klemperer, W. G., Mainz, V. V., & Millar, D. M. (1986), ‘A solid state multinuclear magnetic resonance study of the sol-gel process using polysilicate precursors’ in: Better Ceramics through chemistry II, eds. Brinker, C. J., Clark, D. E., & Ulrich, D. R. , Materials Research Society, 73, 15-25 15 Brunet, F. (1998), ‘Polymerisation reactions in methyltriethoxysilane studied through 29Si NMR with polarisation transfer’, Journal of Non-Crystalline Solids, 231, 58-77 16 Diniz da Costa, J. C. (2000), ‘Synthesis and characterisation of molecular sieve silica (MSS) membranes) ’, PhD thesis, University of Queensland, Australia 17 Rouquerol, F., Rouquerol, J., & Sing, K. (1999), ‘Adsorption by powders & porous solids, principles, methodology and applications’, Academic press, London 18 Benes, N., Nijmeijer, A., & Verweij, H. (2000), in: Membrane Science and Technology Series, 6, edited by Kanellopolous, N.K., Elsevier, Amsterdam 335-373 19 Post, M. F. M. (1991), Diffusion in molecular sieves, in Introduction to zeolite science and practice, eds. H. van Bekkun, E. M. Flanigen and J. C. Jansen, Elsevier, Amsterdam, 1123-1130 20 De Lange, R.S.A., Hekkink, J.H.A., Kiezer, K., & Burggraaf, A.J. (1995), Permeation and separation studies on microporous sol-gel modified ceramic membranes, Microporous Materials, 4, 169-186 21 Burggraaf, A. J. (1996), Transport and separation properties of membranes with gases and vapours in: Fundamentals of inorganic membrane science and technology, eds. A. J. Burggraaf and L. Cot, Elsevier, Amsterdam, 331-433 22 Prabhu, A. K., & Oyama, S. T. (2000),’ Highly hydrogen selective ceramic membranes: application to the transformation of greenhouse gases’, Journal of Membrane Science, 176, 233-248
Q-Index Code E1
Q-Index Status Provisional Code
Institutional Status Unknown

Document type: Conference Paper
Collection: School of Chemical Engineering Publications
 
Versions
Version Filter Type
Citation counts: Google Scholar Search Google Scholar
Created: Fri, 02 Feb 2007, 12:16:19 EST by Belinda Weaver on behalf of Library Corporate Services