CFD Model of a Specific Fire Scenario

Mackay, D., Barber, T. and Leonardi, E. (2007). CFD Model of a Specific Fire Scenario. In: Peter Jacobs, Tim McIntyre, Matthew Cleary, David Buttsworth, David Mee, Rose Clements, Richard Morgan and Charles Lemckert, 16th Australasian Fluid Mechanics Conference (AFMC). 16th Australasian Fluid Mechanics Conference (AFMC), Gold Coast, Queensland, Australia, (1266-1270). 3-7 December, 2007.

Attached Files (Some files may be inaccessible until you login with your UQ eSpace credentials)
Name Description MIMEType Size Downloads
Mackay_afmc_16_07.pdf Conference Paper application/pdf 302.74KB 976

Author Mackay, D.
Barber, T.
Leonardi, E.
Title of paper CFD Model of a Specific Fire Scenario
Conference name 16th Australasian Fluid Mechanics Conference (AFMC)
Conference location Gold Coast, Queensland, Australia
Conference dates 3-7 December, 2007
Proceedings title 16th Australasian Fluid Mechanics Conference (AFMC)
Place of Publication Brisbane, Australia
Publisher School of Engineering, The University of Queensland
Publication Year 2007
Year available 2007
Sub-type Fully published paper
ISBN 978-1-864998-94-8
Editor Peter Jacobs
Tim McIntyre
Matthew Cleary
David Buttsworth
David Mee
Rose Clements
Richard Morgan
Charles Lemckert
Start page 1266
End page 1270
Total pages 5
Collection year 2007
Language eng
Abstract/Summary Flashover is a complex and potentially very dangerous phenomenon. The NSW Fire Brigade currently conducts training courses in flashover and backdraft using a test cell made from a shipping container where chipboard is set alight in the test cell and the fire is allowed to develop into flashover. As part of a collaborative project with the NSWFB, computational models are being developed to aid in the training procedure. CFD models of the test cell in advancing flashover scenarios, using the code FDS are compared with qualitative experimental data, with good agreement shown for the fire behaviour. Models with different configurations of the test cell were also compared, with particular consideration on the effect on time to flashover and temperature trends.
Subjects 290501 Mechanical Engineering
Q-Index Code E1
Q-Index Status Provisional Code
Institutional Status Unknown

Document type: Conference Paper
Collection: 16th Australasian Fluid Mechanics Conference
Version Filter Type
Citation counts: Google Scholar Search Google Scholar
Created: Wed, 19 Dec 2007, 15:06:53 EST by Laura McTaggart on behalf of School of Engineering