A Constant Torque Micro-Viscometer

Parkin, Simon J. W., Knoener, Gregor, Nieminen, Timo A., Heckenberg, Norman R. and Rubinsztein-Dunlop, Halina (2005). A Constant Torque Micro-Viscometer. In: David L. Andrews, Proceedings of SPIE. SPIE The International Society for Optical Engineering, San Jose California USA, (59-65). 25-26 January, 2005. doi:10.1117/12.590147

Attached Files (Some files may be inaccessible until you login with your UQ eSpace credentials)
Name Description MIMEType Size Downloads
UQ103152_OA.pdf Full text (open access) application/pdf 568.45KB 0
parkin2005pspie5.pdf Link to pre-print application/pdf 220.95KB 169

Author Parkin, Simon J. W.
Knoener, Gregor
Nieminen, Timo A.
Heckenberg, Norman R.
Rubinsztein-Dunlop, Halina
Title of paper A Constant Torque Micro-Viscometer
Conference name SPIE The International Society for Optical Engineering
Conference location San Jose California USA
Conference dates 25-26 January, 2005
Proceedings title Proceedings of SPIE   Check publisher's open access policy
Journal name Nanomanipulation with Light   Check publisher's open access policy
Place of Publication Bellingham, USA
Publisher SPIE International Society for Optical Engineering
Publication Year 2005
Sub-type Fully published paper
DOI 10.1117/12.590147
Open Access Status File (Publisher version)
ISBN 9780819465580
ISSN 0277-786X
Editor David L. Andrews
Volume 5736
Start page 59
End page 65
Total pages 7
Collection year 2005
Language eng
Abstract/Summary We present a technique to measure the viscosity of microscopic volumes of liquid using rotating optical tweezers. The technique can be used when only microlitre (or less) sample volumes are available, for example biological or medical samples, or to make local measurements in complicated micro-structures such as cells. The rotation of the optical tweezers is achieved using the polarisation of the trapping light to rotate a trapped birefringent spherical crystal, called vaterite. Transfer of angular momentum from a circularly polarised beam to the particle causes the rotation. The transmitted light can then be analysed to determine the applied torque to the particle and its rotation rate. The applied torque is determined from the change in the circular polarisation of the beam caused by the vaterite and the rotation rate is used to find the viscous drag on the rotating spherical particle. The viscosity of the surrounding liquid can then be determined. Using this technique we measured the viscosity of liquids at room temperature, which agree well with tabulated values. We also study the local heating effects due to absorption of the trapping laser beam. We report heating of 50-70 K/W in the region of liquid surrounding the particle.
Subjects E1
240499 Optical Physics not elsewhere classified
780102 Physical sciences
240504 Electrostatics and Electrodynamics
240400 Optical Physics
240502 Fluid Physics
Keyword optical angular momentum
References 1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S.Chu, Observation of single-beam gradient force optical trap for dielectric particles, Optics Letters 11, p. 288, 1986. 2. R. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, Quantitative measurements of force and displacement using an optical trap, Biophysical Journal 70, pp. 1813-1822, 1996. 3. L. Starrs and P. Bartlett, Colloidal dynamics in polmer solutions: Optical two-point microrheology measurements, Faraday Discussions 123, pp. 323-33, 2002. 4. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity, Physical Review Letters 75, p. 826, 1995. 5. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Optical alignment and spinning of laser-trapped microscopic particles, Nature 394, pp. 348-350, 1998. 6. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Optical microrheology using rotating laser-trapped particles, Physical Review Letters 92, p. 198104, 2004. 7. T. G. Mason, K. Ganesan, J. H. van Zanten, D. Wirtz, and S. C. Kuo, Particle tracking microrheology of complex fluids, Physical Review Letters 79, pp. 3282-3285, 1997. 8. F. Gittes, B. Schnurr, P. D. Olmsted, F. C. MacKintosh, and C. F. Schmidt, Microscopic viscoelasicity: Shear moduli of soft materials determined from thermal fluctuations, Physical Review Letters 79, pp. 3286-3289, 1997. 9. J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, Two-point microrheology of inhomogeneous soft materials, Physical Review Letters 85, pp. 888-891, 2000. 10. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Optical measurement of microscopic torques, Journal of Modern Optics 48, pp. 405-413, 2001. 11. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, 1987. 12. H. A. Barnes, J. F. Hutton, and K. Walters, An Introduction to Rheology, Elsevier Science Publishers B.V., 1989. 13. E. Fouissac, M. Milas, and M. Rinaudo, Shear-rate, concentration, molecular weight, and temperature viscosity dependences of hyaluronate, a wormlike polyelectrolyte, Macromolecules 26, pp. 6945-6951, 1993. 14. E. J. Peterman, F. Gittes, and C. F. Schmidt, Laser-induced heating in optical traps, Biophysical Journal 84, pp. 1308-1316, 2003. 15. Y. Liu, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, Evidence for localized cell heating induced by infrared optical tweezers, Biophysical Journal 68, pp. 2137-2144, 1995.
Q-Index Code E1

Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 2 times in Thomson Reuters Web of Science Article | Citations
Scopus Citation Count Cited 1 times in Scopus Article | Citations
Google Scholar Search Google Scholar
Created: Thu, 23 Aug 2007, 21:23:38 EST