Browse by all authors Browse By Author ID - Jones, Liat

Browse Results (9 results found)

Subscribe to the RSS feed for this result setSubscribe to the RSS feed for this result set


  Abstract Views File Downloads Thomson Reuters Web of Science Citation Count Scopus Citation Count Altmetric Score
Ng, SK, McLachlan, GJ, Wang, K, Jones, LBT and Ng, SW (2006) A Mixture model with random-effects components for clustering correlated gene-expression profiles. Bioinformatics, 22 14: 1745-1752. doi:10.1093/bioinformatics/btl165 1131   71 Cited 76 times in Scopus76 0
Jones, LBT, Bean, R, McLachlan, G and Zhu, J (2005) Application of mixture models to detect differentially expressed genes. Intelligent Data Engineering And Automated Learning Ideal 2005, Proceedings, 3578 -: 422-431. 70   1 Cited 1 times in Scopus1
McLachlan, GJ, Bean, RW and Jones, LBT (2006) A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays. Bioinformatics, 22 13: 1608-1615. doi:10.1093/bioinformatics/btl148 72   76 Cited 84 times in Scopus84 0
McLachlan, G. J., Bean, R. W. and Jones, L. B. T. (2007) Extension of the Mixture of Factor Analyzers Model to Incorporate the Multivariate t-Distribution. Computational Statistics & Data Analysis, 51 11: 5327-5338. doi:10.1016/j.csda.2006.09.015 86   47 Cited 51 times in Scopus51 0
Jones, L., Ng, A.S. K., Monico, K. A. and McLachlan, G. J. (2004). Linking gene-expression experiments with survival-time data. In: A. Biggeri and et al, Proceedings of the 19th International Workship on Statistical Modelling. 19th International Workshop on Statistical Modelling, Florence, (71-75). 4-8 July 2004. 71  
Jones, L. B. T., Bean, R., McLachlan, G. J. and Zhu, J. X. (2006) Mixture models for detecting differentially expressed genes in microarrays. International Journal of Neural Systems, 16 5: 353-362. doi:10.1142/S0129065706000755 49   3 Cited 3 times in Scopus3 0
Zhu, J. X., McLachlan, G. J., Jones, L. B. T. and Wood, I. A. (2008) On selection biases with prediction rules formed from gene expression data. Journal of Statistical Planning and Inference, 138 2: 374-386. doi:10.1016/j.jspi.2007.06.003 60   9 Cited 9 times in Scopus9 0
Jones, L., Ng, S., Ambroise, C, Monico, K. A., Khan, N. and McLachlan, G. J. (2005). Use of microarray data via model-based classification in the study and prediction of survival from lung cancer. In Jennifer S. Shoemaker and Simon M. Lin (Ed.), Methods of microarray data analysis IV (pp. 163-173) New York, USA: Springer. doi:10.1007/0-387-23077-7_13 55   1 0
McLachlan, G. J., Bean, R. W., Jones, L. and Zhu, J. X. (2005) Using mixture models to detect differentially expressed genes. Australian Journal Of Experimental Agriculture, 45 7-8: 859-866. doi:10.1071/EA05051 61   13 Cited 14 times in Scopus14 0