Browse by all authors Browse By Author ID - Chabrowski, Jan H.

Browse Results (54 results found)

Subscribe to the RSS feed for this result setSubscribe to the RSS feed for this result set

Page 1 of 2

Result Pages:    1 2  next › last »

Refine

  Abstract Views File Downloads Thomson Reuters Web of Science Citation Count Scopus Citation Count Altmetric Score
Chabrowski, J. H. and Tintarev, K. (2005) An Elliptic Neumann Problem with Subcritical Nonlinearity. Bulletin of the Polish Academy of Sciences, 53 1: 7-16. 43  
Chabrowski, Jan and Tintarev, Cyril (2014) An elliptic problem with an indefinite nonlinearity and a parameter in the boundary condition. Nonlinear Differential Equations and Applications, 21 4: 519-540. doi:10.1007/s00030-013-0256-8 13   0 Cited 0 times in Scopus0 0
Chabrowski, J, Drabek, P and Tonkes, E (2005) Asymptotic bifurcation results for quasilinear elliptic operators. Glasgow Mathematical Journal, 47 55-67. doi:10.1017/S001708950400206X 49   5 Cited 7 times in Scopus7 0
Chabrowski, J. H. and Yan, S. (1999) Concentration of solutions for nonlinear elliptic problem with nearly critical exponent. Topological Methods in Nonlinear Analysis, 13 2: 199-233. 41  
Cao, Daomin and Chabrowski, Jan (2007) Critical Neumann problem with competing hardy potentials. Revista Matematica Complutense, 20 2: 309-338. 36   6
Chabrowski, J and Fu, YQ (2005) Existence of solutions for p(x)-Laplacian problems on a bounded domain. Journal of Mathematical Analysis And Applications, 306 2: 604-618. doi:10.1016/j.jmaa.2004.10.028 118   63 Cited 80 times in Scopus80 0
Chabrowski, J and Wang, ZQ (2007) Exterior nonlinear Neumann problem. Nodea-nonlinear Differential Equations And Applications, 13 5-Jun: 683-697. doi:10.1007/s00030-006-4040-x 32   3 Cited 2 times in Scopus2 0
Chabrowski, J. and Tintarev, K. (2011) Ground state for the Schroedinger operator with the weighted Hardy potential. International Journal of Differential Equations, 2011 358087: 1-26. doi:10.1155/2011/358087 14   Cited 0 times in Scopus0 0
Chabrowski, J. and Willem, M. (2005) Hardy's inequality on exterior domains. Proceedings Of The American Mathematical Society, 134 4: 1019-1022. doi:10.1090/S0002-9939-05-08407-8 34   Cited 2 times in Scopus2 0
Chabrowski, J. and Willem, M. (2002) Least energy solutions of a critical Neumann problem with a weight. Calculus of Variations and Partial Differential Equations, 15 4: 421-431. doi:10.1007/s00526-002-0101-0 78   21 Cited 21 times in Scopus21 0
Chabrowski, J. H. (2002) Mean curvature and least energy solutions for the critical Neumann problem with weight. Unione Matematica Italiana. Bollettino B, 5-B 3: 715-733. 47   5
Chabrowski, J. H. and Yang, Jianfu (2000) Multiple semiclassical solutions of the Schrodinger equation involving a critical Sobolev exponent. Portugaliae Mathematica, 57 3: 273-284. 49  
Chabrowski, J. H. (2008) Multiple solutions for a nonlinear Neumann problem involving a critical Sobolev exponent. Note di Matematica, 28 1: 15-28. doi:10.1285/i15900932v28n1p15 52   Cited 3 times in Scopus3 0
Chabrowski, J. H. and Yang, J. (2003) Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent. Rendiconti del Seminario Matematico dell'Universita di Padova, 110 1-23. 40   1
Chabrowski, J. H. and Costa, D. G. (2008) On a class of Schrodinger-Type equations with indefinite weight functions. Communications in Partial Differential Equations, 33 8: 1368-1393. doi:10.1080/03605300601088880 86 6 7 Cited 5 times in Scopus5 0
Chabrowski, J. H. (2008) On a critical Neumann problem with a perturbation of lower order. Acta Mathematicae Applicatae Sinica, English Series, 24 3: 441-452. doi:10.1007/s10255-008-8038-5 43   3 Cited 2 times in Scopus2 0
Chabrowski, J., Peral, I. and Ruf, B. (2010) On an eigenvalue problem involving the Hardy potential. Communications in Contemporary Mathematics, 12 6: 953-975. doi:10.1142/S0219199710004044 42   0 Cited 0 times in Scopus0 0
Chabrowski, J. (2008) On an obstacle problem for degenerate elliptic operators involving the critical Sobolev exponent. Journal of Fixed Point Theory and Applications, 4 1: 137-150. doi:10.1007/s11784-007-0082-5 38   1 Cited 2 times in Scopus2 0
Chabrowski, Jan and Szulkin, Andrzej (2002) On a semilinear Schrodinger equation with critical Sobolev exponent. Proceedings of the American Mathematical Society, 130 1: 85-93. doi:10.1090/S0002-9939-01-06143-3 79   20 Cited 24 times in Scopus24 0
Chabrowski, Jan (2014) On a singular nonlinear Neumann problem. Opuscula Mathematica, 34 2: 271-290. doi:10.7494/OpMath.2014.34.2.271 24   Cited 0 times in Scopus0 0
Chabrowski, J. H. and Tonkes, E. J. (2003) On elliptic systems pertaining to the Schrdinger equation. Annales Polonici Mathematici, 81 3: 273-294. 38  
Chabrowski, J. and Costa, D. G. (2010) On existence of positive solutions for a class of Caffarelli-Kohn-Nirenberg type equations. Colloquium Mathematicum, 120 1: 43-62. doi:10.4064/cm120-1-4 62   4 0
Chabrowski, J. and Willem, M. (2005) On multiple solutions of the exterior neumann problem involving critical sobolev exponent. Topological Methods In Nonlinear Analysis, 26 1: 89-108. 49   2
Chabrowski, J. H. (2004) On multiple solutions of the Neumann problem involving the critical Sobolev exponent. Colloquium Mathematicum, 101 2: 203-220. 51  
Chabrowski, J. H. and Girao, P.M. (2001) On nonlinear Neumann problem and sharp weighted Sobolev inequalities.. Colloquium Mathematicum, 88 2: 193-213. 43  
Chabrowski, J. and Drabek, P (2002) On positive solutions of nonlinear elliptic equations involving concave and critical nonlinearities. Studia Mathematica, 151 1: 67-85. doi:10.4064/sm151-1-5 69   2 Cited 1 times in Scopus1 0
Chabrowski, Jan H. and Grotowski, Joseph F. (2011) On radial solutions of the Schrodinger type equation. Advanced Nonlinear Studies, 11 2: 295-310. 170 1 0 Cited 0 times in Scopus0
Chabrowski, Jan and Yang, Jianfu (1998) On Schrodinger Equation with Periodic Potential and Critical Sobolev Exponent. Topological Methods in Nonlinear Analysis, 12 2: 245-261. 100  
Chabrowski, J. H. and Marcos Bezzera Do O, J. (2002) On semilinear elliptic equations involving concave and convex nonlinearities. Mathematische Nachrichten, 233-234 55-76. doi:10.1002/1522-2616(200201)233:1<55::AID-MANA55>3.3.CO;2-I 64   21 Cited 20 times in Scopus20 0
Chabrowski, J. H., Watson, P. and Yang, J. (2001) On shape and multiplicity of solutions for a singularly perturbed Neuman problem. Annales Polonici Mathematici, 77 2: 119-159. 45  
Chabrowski, J. H. and Marcos do O, J. (2002) On some fourth-order semilinear elliptic problems in RN. Nonlinear Analysis, 49 6: 861-884. doi:10.1016/S0362-546X(01)00144-4 37   30 Cited 34 times in Scopus34 0
Chabrowski, J. H. and Ruf, B. (2003) On the critical Neumann problem with weight in exterior domains. Nonlinear Analysis, 54 1: 143-163. doi:10.1016/S0362-546X(03)00059-2 25   9 Cited 6 times in Scopus6 0
Chabrowski, J. H. (2011) On the existence of a solution to a class of variational inequalities. Ricerche di Matematica, 60 2: 333-350. doi:10.1007/s11587-011-0110-4 9   Cited 0 times in Scopus0 0
Chabrowski, J. H. and Girao, P.M. (2004) On the exterior Neumann problem involving the critical Sobolev exponent. Topological Methods in Nonlinear Analysis, 23 1: 33-43. 40  
Chabrowski, J. (2006) On the exterior Neumann problem with critical growth. Differential and Integral Equations, 19 1: 75-90. 52 2
Chabrowski, J. H. and Yang, J. (2001) On the Neumann problem for an elliptic system of equations involving the critical Sobolev exponent. Colloquium Mathematicum, 90 1: 19-35. 67  
Chabrowski, Jan (2011) On the Neumann problem for systems of elliptic equations involving homogeneous nonlinearities of a critical degree. Colloquium Mathematicum, 125 1: 115-127. doi:10.4064/cm125-1-8 54 1 0 Cited 0 times in Scopus0 0
Chabrowski, Jan H. (2010) On the Neumann problem involving the Hardy - Sobolev potentials. Annals of the University of Bucharest (Mathematical Series), LIX 2: 209-226. 40 1
Chabrowski, Jan and Yang, Jianfu (2005) On the Neumann problem with combined nonlinearities. Annales Polonici Mathematici, 85 3: 239-250. doi:10.4064/ap85-3-5 88   0
Chabrowski, J. (2010) On the Neumann problem with multiple critical nonlinearities. Complex Variables and Elliptic Equations, 55 5-6: 501-524. doi:10.1080/17476930903275961 22   0 Cited 1 times in Scopus1 0
Chabrowski, Jan Henryk (2009) On the Neumann problem with singular and superlinear nonlinearities. Communications in Applied Analysis, 13 3: 327-340. 49   Cited 1 times in Scopus1
Chabrowski, J (2007) On the Neumann problem with the Hardy-Sobolev potential. Annali Di Matematica Pura Ed Applicata, 186 4: 703-719. doi:10.1007/s10231-006-0027-9 37   4 Cited 5 times in Scopus5 0
Chabrowski, J. H. and Yan, S. (2002) On the nonlinear Neumann problem at resonance with critical Sobolev nonlinearity. Colloquium Mathematicum, 94 1: 141-150. 62  
Chabrowski, J. H. (2004) On the nonlinear Neumann problem involving the critical Sobolev exponent and Hardy potential. Revista Mathematica, 17 1: 195-227. 32  
Chabrowski, J (2004) On the nonlinear Neumann problem involving the critical Sobolev exponent on the boundary. Journal of Mathematical Analysis And Applications, 290 2: 605-619. doi:10.1016/j.jmaa.2003.10.036 36   4 Cited 3 times in Scopus3 0
Chabrowski, J. H. and Tonkes, E. J. (2003) On the nonlinear Neumann problem with critical and supercritical nonlinearities. Dissertationes Mathematicae, 417 1-59. 134 12
Chabrowski, J. H. (2002) On the nonlinear Neumann problem with indefinite weight and Sobolev critical nonlinearity. Bulletin of the Polish Academy of Sciences Mathematics, 50 3: 323-333. 42  
Chabrowski, J. and Szulkin, A. (2005) On the Schrodinger equation involving a critical Sobolev exponent and magnetic field. Topological Methods In Nonlinear Analysis, 25 1: 3-21. 52   27
Chabrowski, J. H., FILIPPAS, S. and TERTIKAS, A. (2006) Positive solutions of a Neumann problem with competing critical nonlinearities. Topological Methods In Nonlinear Analysis, 28 1: 1-31. 62   2
Chabrowski, Jan, Szulkin, Andrzej and Willem, Michel (2009) Schrodinger equation with multiparticle potential and critical nonlinearity. Topological Methods in Nonlinear Analysis, 34 2: 201-211. 42   2 Cited 2 times in Scopus2

Page 1 of 2

Result Pages:    1 2  next › last »