Browse by all authors Browse By Author ID - Dodd, Jennifer L.

Browse Results (8 results found)

Subscribe to the RSS feed for this result setSubscribe to the RSS feed for this result set


  Abstract Views File Downloads Thomson Reuters Web of Science Citation Count Scopus Citation Count Altmetric Score
Dodd, Jennifer L., Ralph, Timothy C. and Milburn, G. J. (2003) Experimental Requirements for Grover's Algorithm in Optical Quantum Computation. 471 292
Bremner, MJ, Dodd, JL, Nielsen, MA and Bacon, D (2004) Fungible dynamics: There are only two types of entangling multiple-qubit interactions. Physical Review A, 69 1: . doi:10.1103/PhysRevA.69.012313 32 4 18 Cited 17 times in Scopus17 0
Bremner, M. J., Dawson, C. M., Dodd, J. L., Gilchrist, A., Harrow, A. W., Mortimer, D., Nielsen, M. A. and Osborne, T. J. (2002) Practical scheme for quantum computation with any two-qubit entangling gate. Physical Review Letters, 89 24: . doi:10.1103/PhysRevLett.89.247902 58   107 Cited 111 times in Scopus111 1
Nielsen, Michael A., Dawson, Christopher M., Dodd, Jennifer L., Gilchrist, Alexei, Mortimer, Duncan, Osborne, Tobias J., Bremner, Michael J., Harrow, Aram W. and Hines, Andrew (2003) Quantum dynamics as a physical resource. Physical Review A, 67 5: . doi:10.1103/PhysRevA.67.052301 65   68 Cited 62 times in Scopus62 0
Dodd, JL and Nielsen, MA (2002) Simple operational interpretation of the fidelity of mixed states. Physical Review A, 66 044301: . doi:10.1103/PhysRevA.66.044301 43   13 Cited 12 times in Scopus12 0
Dodd, Jennifer L. (2004). Universality in quantum computation PhD Thesis, School of Physical Sciences, The University of Queensland. 162 5
Dodd, JL, Nielsen, MA, Bremner, MJ and Thew, RT (2002) Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries. Physical Review A, 65 040301(R): . doi:10.1103/PhysRevB.65.040301 70   62 Cited 59 times in Scopus59 0
Nielsen, MA, Bremner, MJ, Dodd, JL, Childs, AM and Dawson, CM (2002) Universal simulation of Hamiltonian dynamics for quantum systems with finite-dimensional state spaces. Physical Review A, 66 022317: . doi:10.1103/PhysRevA.66.022317 44   44 Cited 43 times in Scopus43 3